精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数 的图象相交于点B(m,1).
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.

【答案】
(1)解:∵B在的图象上,

∴把B(m,1)代入y= 得m=2

∴B点的坐标为(2,1)

∵B(2,1)在直线y=ax﹣a(a为常数)上,

∴1=2a﹣a,

∴a=1

∴一次函数的解析式为y=x﹣1.


(2)解:过B点向y轴作垂线交y轴于P点.此时∠BPA=90°

∵B点的坐标为(2,1)

∴P点的坐标为(0,1)

当PB⊥AB时,

在Rt△P1AB中,PB=2,PA=2

∴AB=2

在等腰直角三角形PAB中,PB=PA=2

∴PA= =4

∴OP=4﹣1=3

∴P点的坐标为(0,3)

∴P点的坐标为(0,1)或(0,3).


【解析】(1)由点在函数图象上,得到点的坐标满足函数解析式,利用待定系数法即可求得.(2)分两种情况,一种是∠BPA=90°,另一种是∠PBA=90°,所以有两种答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A的坐标为(﹣2,0),直线y=﹣ x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.

(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:(﹣ 1+( 0﹣4cos30°﹣| ﹣2|;
(2)先化简,后求值:( ﹣x+1)÷ ,其中x= ﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.

(1)求证:AE=BG
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°)如图2所示,判断(1)中的结论是否仍然成立?如果仍成立,请给予证明;如果不成立,请说明理由;
(3)若BC=DE=4,当旋转角α为多少度时,AE取得最大值?直接写出AE取得最大值时α的度数,并利用备用图画出这时的正方形DEFG,最后求出这时AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.

(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.

(3)在图(2)中,若AB=AC=10,BC=12,当SDEF= SABC时,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).
(1)①画出△ABC关于x轴对称的△A1B1C1
②以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 , 使△A2B2C2与△A1B1C1的相似比为2:1.
(2)直接写出C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④当y>0时,x的取值范围是﹣1<x<3;⑤当x>0时,y随x增大而减小.其中结论正确的个数是(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.

查看答案和解析>>

同步练习册答案