【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.
【答案】
(1)解:∵b2﹣4ac=(2m+1)2﹣4( m2﹣1)
=(4m2+4m+1)﹣2m2+4
=2m2+4m+5
=2(m+1)2+3>0,
∴不论m取什么实数,方程x2﹣(2m+1)+( m2﹣1)=0都有两个不相等的实数根,
∴不论m取什么实数,该二次函数图象与x轴总有两个交点
(2)解:∵该二次函数图象经过点(2m﹣2,﹣2m﹣1),
∴(2m﹣2)2﹣(2m+1)(2m﹣2)+( m2﹣1)=﹣2m﹣1,
解得:m1=2,m2=6,
当m=2时,该二次函数的表达式为:y=x2﹣5x+1,
当m=6时,该二次函数的表达式为:y=x2﹣13x+17
【解析】(1)首先求出b2﹣4ac的表达式,进而利用配方法求出其符号,进而得出答案;(2)将已知点代入进而求出m的值得出答案.
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣ ),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则 PB+PD的最小值为;
(3)M(x,t)为抛物线对称轴上一动点
①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有 个;
②连接MA,MB,若∠AMB不小于60°,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90°, ③AC=BD,④AC⊥BD中,再选两个做为补充,使ABCD变为正方形.下面四种组
合,错误的是( )
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之积小于6的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=ax2+bx+2的图象经过点A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点Q(m,m﹣1)是抛物线上位于第一象限内的点,P是线段AB上的一个动点(不与A、B重合),经过点P分别作PD∥BQ交AQ于点D,PE∥AQ交BQ于点E. ①判断四边形PDQE的形状;并说明理由;
②连接DE,求出线段DE的长度范围;
③如图2,在抛物线上是否存在一点F,使得以P、F、A、C为顶点的四边形为平行四边形?若存在,求出点F和点P坐标;若不存在,说明理由.
(3)当r=2 时,在P1(0,2),P2(﹣2,4),P3(4 ,2),P4(0,2﹣2 )中,求可以成为正方形ABCD的“等距圆”的圆心的坐标?
(4)若点P坐标为(﹣3,6),则当⊙P的半径r为多长时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线AC的位置关系?并说明理由.
(5)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据: ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数 的图象相交于点B(m,1).
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com