【题目】周末,小华骑自行车从家出发到植物园玩,从家出发 1 小时后,因自行车损坏修理了一段时间后,按原速前往植物园,小华从家出发 1 小时 50 分后,爸爸从家出发骑摩托车沿相同路线前往植物园,如图是他们家的路程 y(km)与小华离家的时间 x(h)的函数图象,已知爸爸骑摩托车的速度是小华骑车速度的 2 倍,若爸爸比小华早 10 分达到植物园,则小华家到植物园的路程是_____km.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为( )
A. 5B. +1C. 2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小甲虫从某点O出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬过的各段路程依次为:(单位:厘米)
+4,6,8,+12,10,+11,3
(1)小甲虫最后是否回到了出发点O呢?
(2)小甲虫离开点O的最远距离是多少厘米?
(3)在爬行过程中,如果每爬1厘米奖励三粒芝麻,那么小甲虫一共得到多少粒芝麻?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读下面的材料,完成有关问题:
材料 在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可表示为|a-b|.
(1)点A,B,C在数轴上分别表示有理数-5,-1, 3,那么A到B的距离是 ,A到C的距离是_____.(直接填最后结果)
(2)点A,B,C在数轴上分别表示有理数x,-2,1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
(3)利用数轴探究:
①设|x-3|+|x+1|=p,当x的值取在不小于-1 且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是_____;
②求|x|+|x-2|的最小值以及此时x的取值范围?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(+17)+(-12);
(2)10+(―)―6―(―0.25);
(3)()×48 ;
(4)|-5-4|-5×(-2)2-1÷(-)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为( )
A. 5, (90°+∠P) B. 7,90°+ C. 10,90°-∠P D. 10,90°+∠P
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,直线 y=﹣x+6 与 y 轴于点 A,与 x 轴交于点 D,直线 AB 交 x 轴于点 B,AOB 沿直线 AB 折叠,点 O 恰好落在直线 AD 上的点 C 处.
(1)求点 B 的坐标;
(2)如图 2,直线 AB 上的两点 F、G,DFG 是以 FG 为斜边的等腰直角三角形,求点 G 的坐标;
(3)如图 3,点 P 是直线 AB 上一点,点 Q 是直线 AD 上一点,且 P、Q 均在第四象限,点 E 是 x 轴上一点,若四边形 PQDE 为菱形,求点 E 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,并回答下列问题:
小明遇到这样一个问题,如图,在中,分别交于点,交于点.已知,求的值.
小明发现,过点作,交的延长线于点,构造,经过推理和计算能够使问题得到解决(如图)
请你回答:
(1)证明:;
(2)求出的值;
(3)参考小明思考问题的方法,解决问题;
如图,已知和矩形与交于点.求的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com