分析 由于四边形ABCD是正方形,△AEF是等边三角形,所以首先根据已知条件可以证明△ABE≌△ADF,再根据全等三角形的性质得到BE=DF,设BE=x,那么DF=x,CE=CF=1-x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出关于x的方程,解方程即可求出BE.
解答 解:∵四边形正方形ABCD,
∴∠B=∠D=90°,AB=AD,![]()
∵△AEF是等边三角形,
∴AE=EF=AF,
∴△ABE≌△ADF,
∴BE=DF,
设BE=x,那么DF=x,CE=CF=1-x,
在Rt△ABE中,AE2=AB2+BE2,
在Rt△EFC中,FE2=CF2+CE2,
∴AB2+BE2=CF2+CE2,
∴x2+1=2(1-x)2,
∴x2-4x+1=0,
∴x=2±$\sqrt{3}$,而x<1,
∴x=2-$\sqrt{3}$,
即BE的长为=2-$\sqrt{3}$,
∴CE=BC-BE=1-(2-$\sqrt{3}$)=$\sqrt{3}$-1.
点评 本题主要考查了正方形、等边三角形的知识,把求线段长放在正方形的背景中,利用勾股定理列出一元二次方程解决问题,难度适中.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com