【题目】拖拉机开始工作时,油箱中有油30L,每小时耗油5L.
(1)写出油箱中的剩余测量Q(L)与工作时间t(h)之间的函数表达式,并求出自变量t的取值范围;
(2)当拖拉机工作4h时,油箱内还剩余油多少升?
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,过B作BC⊥AB交⊙O于点C,过C作⊙O的切线交AB的延长线于点D,取AD的中点E,过E作EF∥BC交DC 的延长线与点F,连接AF并延长交BC的延长线于点G.
求证:(1)FC=FG (2)=BCCG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对单项式“5x”,我们可以这样来解释:某人以5千米/小时的速度走了x小时,他一共走的路程是5x千米,请你对“5x”再给出另一个生活实际方面的解释_________________________________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )
A. 280×103B. 28×104C. 2.8×105D. 0.28×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是( )
A.x(30﹣2x)平方厘米
B.x(30﹣x)平方厘米
C.x(15﹣x)平方厘米
D.x(15+x)平方厘米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
简单应用:
(1)在图①中,若AC=,BC=,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.
(1)求9、10这两个月的月平均增长率;
(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com