【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
简单应用:
(1)在图①中,若AC=,BC=,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 .
【答案】(1)3;(2);(3);(4)PQ=AC或PQ=AC.
【解析】
试题分析:(1)由题意可知:AC+BC=CD,所以将AC与BC的长度代入即可得出CD的长度;
(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;
(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;
(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.
试题解析:(1)由题意知:AC+BC=CD,∴=CD,∴CD=3,;
(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;
(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④
由(2)的证明过程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:,∴,∵,∴==,∵m<n,∴CD=;
(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a,∴PQ=AC;
当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.
综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.
科目:初中数学 来源: 题型:
【题目】拖拉机开始工作时,油箱中有油30L,每小时耗油5L.
(1)写出油箱中的剩余测量Q(L)与工作时间t(h)之间的函数表达式,并求出自变量t的取值范围;
(2)当拖拉机工作4h时,油箱内还剩余油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】((2016四川省凉山州)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com