精英家教网 > 初中数学 > 题目详情

已知直线L于直线数学公式平行,且过点(4,3),求直线L与两坐标轴围成的三角形面积.

解:设直线L的解析式为y=-x+b,
∵直线L经过点(4,3),
∴-×4+b=3,
解得b=6,
∴y=-x+6,
令y=0,则-x+6=0,解得x=8,
令x=0,则y=6,
∴与x轴交点坐标为(8,0),与y轴交点坐标为(0,6),
直线L与两坐标轴围成的三角形面积:S=×8×6=24.
分析:根据平行直线的解析式的k值相等设直线L的解析式为y=-x+b,把点(4,3)的坐标代入求出b的值,再求出直线L与坐标轴的交点坐标,然后根据三角形的面积公式列式计算即可得解.
点评:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出直线L的解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图所示,已知直线AM、DF,C、E分别在直线AM、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连接CF,再指出CF的中点O,然后连接EO并延长EO和直线AM相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你填上根据.
小华是这样想的:
因为CF和BE相交于点O,
根据
对顶角相等
得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据
SAS
得出△COB≌△FOE,
根据
全等三角形的对应边相等
得出BC=EF,
根据
全等三角形的对应角相等
得出∠BCO=∠F.
既然∠BCO=∠F,根据
内错角相等
得出AB∥DF,
既然AB∥DF,根据
两直线平行,同旁内角互补
得出∠ACE和∠DEC互补

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l平行于直线y=-3x,且它与直线y=2x的交点是(a,3),求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线L于直线y=-
34
x+3
平行,且过点(4,3),求直线L与两坐标轴围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线AB∥CD,直线EF与AB、CD分别相交于点E、F.
(1)如图1,若∠1=60°,求∠2、∠3的度数;
(2)若点P是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系:
①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;
请阅读下面的解答过程,并填空(理由或数学式).
解:如图2,过点P作MN∥AB,
则∠EPM=∠PEB
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∵AB∥CD(已知),MN∥AB(作图),
∴MN∥CD
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)

∴∠MPF=∠PFD
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD.
②当点P在图3的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°

③当点P在图4的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

同步练习册答案