【题目】如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=1,点D为AC上一动点,连接BD,以BD为边作等边△BDE,设CD=n.
(1)当n=1时,EA的延长线交BC的延长线于F,则AF=;
(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH.
①设∠CBD=x,用含x的式子表示∠ADE和∠ABE.
②求证:△AEH为等边三角形.
【答案】
(1)2
(2)解:①证明:∵△BDE是等边三角形,
∴BE=BD,∠EDB=∠EBD=60°,
在△BCD中,∠ADE+∠EDB=∠CBD+∠C,
即∠ADE+60°=∠CBD+90°=x+90°,
∴∠ADE=30°+∠CBD,
∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,
∴∠HBE=30°+∠CBD,
∴∠ADE=∠HBE,
∴∠ABE=∠ADE=x+90°;
②在△ADE与△HBE中,
,
∴△ADE≌△HBE(SAS),
∴AE=HE,∠AED=∠HEB,
∴∠AED+∠DEH=∠DEH+∠HEB,
即∠AEH=∠BED=60°,
∴△AEH为等边三角形
【解析】(1)解:∵△BDE是等边三角形,
∴∠EDB=60°,
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=180°﹣90°﹣30°=60°,
∴FAC=180°﹣60°﹣60°=60°,
∴∠F=180°﹣90°﹣60°=30°,
∵∠ACB=90°,
∴∠ACF=180°﹣90°,
∴AF=2AC=2×1=2;
故答案为:2.
(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)①根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠ABE;②然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.
科目:初中数学 来源: 题型:
【题目】(本题满分6分)我校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校1800名学生一餐浪费的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式计算正确的是( )
A.a+2a2=3a3
B.(a+b)2=a2+ab+b2
C.2(a﹣b)=2a﹣2b
D.(2ab)2÷(ab)=2ab(ab≠0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点E、D分别从A、C出发,沿AC,CB方向以相同的速度在线段AC,CB上运动,AD、BE相交于F点.
(1)求证:△ABE≌△CAD;
(2)当E、D运动时,∠BFD大小是否发生改变?若不变求其大小,若改变求其变化范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.
(1)求A,B两种商品每件多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com