分析 (1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
解答 解:
(1)设直线OA的解析式为y=kx,
把A(3,4)代入得4=3k,解得k=$\frac{4}{3}$,
所以直线OA的解析式为y=$\frac{4}{3}$x;
∵A点坐标为(3,4),
∴OA=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴OB=OA=5,
∴B点坐标为(0,-5),
设直线AB的解析式为y=ax+b,
把A(3,4)、B(0,-5)代入得$\left\{\begin{array}{l}{3a+b=4}\\{b=-5}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=-5}\end{array}\right.$,
∴直线AB的解析式为y=3x-5;
(2)∵A(3,4),
∴A点到y轴的距离为3,且OB=5,
∴S=$\frac{1}{2}$×5×3=$\frac{15}{2}$.![]()
点评 本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com