【题目】随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2014年底到2017年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2017年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
【答案】(1) 216辆;(2)见解析.
【解析】
(1)设年平均增长率是x,根据某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆,可求出增长率,进而可求出到2017年底家庭电动车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,可列出不等式组求解,进而可求出方案情况.
解:(1)设家庭电动自行车拥有量的年平均增长率为x,
则125(1+x)2=180,
解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)
∴180(1+20%)=216(辆),
答:该小区到2017年底家庭电动自行车将达到216辆;
(2)设该小区可建室内车位a个,露天车位b个,
则,
由①得b=150﹣5a,
代入②得20≤a≤,
∵a是正整数,
∴a=20或21,
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;
方案二:室内车位21个,露天车位45个
科目:初中数学 来源: 题型:
【题目】已知二次函数(是常数)
(1)求证:不论为何值,该函数图象与轴一定有两个公共点。
(2)若该函数图象经过点(0,-2),则该函数图象怎样平移经过原点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.
(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?
(2)若要使商场平均每天的盈利最多,每件衬衣应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+ax+a-2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为1,求a的值及该方程的另一根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com