【题目】如图,在△ABC中,∠C=60°,∠A=40°.
(1)用尺规作图:作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);
(2)求证:BD平分∠CBA.
【答案】
(1)解:如图①所示.
(2)解:证明:连接BD,如图②所示.
∵∠C=60°,∠A=40°,∴∠CBA=80°.
∵DE是AB的垂直平分线,∴AD=BD.
∴∠A=∠DBA=40°.
∴∠DBA= ∠CBA.
∴BD平分∠CBA
【解析】(1)分别以A,B两点为圆心,以大于AB长度一半得长度为半径作弧,两弧在AB的两侧分别相交,过弧的两交点作直线,交AC于点D,交AB于点E,这条直线就是所求的AB的中垂线;
(2):连接BD,根据三角形的内角和得出∠CBA=80°,根据中垂线的性质得出AD=BD ,根据等边对等角得出∠A=∠DBA=40° ,从而得出∠DBA= ∠CBA,即BD平分∠CBA。
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,经过B、D两点的⊙O交AB 于点E,交BC于点F,EB为⊙O的直径.
(1)求证:AC是⊙O的切线;
(2)当BC=2,cos∠ABC=时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1)将线段AB平移后得到线段A′B′,若点A的坐标为(﹣2,2),则点B′的坐标为( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义运算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则bb﹣aa的值为( )
A. 0 B. 1 C. 2 D. 与m有关
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com