精英家教网 > 初中数学 > 题目详情

【题目】如图,梯形ABCD中,ABDC , ∠B=90°,EBC上一点,且AEED . 若BC=12,DC=7,BEEC=1:2,

(1)AB
(2)AED的面

【答案】
(1)

解答:ABDC,且B=90°

∴∠AEB+BAE=90°C=90度.

∴∠AEB+CED=90度.

BAE=CED

∴△EAB∽△DEC

=

BEEC=12,且BC=12DC=7

=

AB=


(2)

解答:∵△EAB∽△DEC

即: =

解得:CD=7

SAED=S梯形ABCD-SABE-SECD= AB+CDBC- ABBE- ECCD=

+712- × ×4- ×8×7=


【解析】(1)由题意易知ABCD所在的两个三角形相似,再利用相似比即可求出所求线段的长度.(2)根据证得的△EAB∽△DEC利用相似三角形对应边的比成比例求得线段CD的长,利用梯形的面积减去两个三角形的面积即可求得三角形AED的面积.
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= x2+bx﹣ 的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段abc满足abc=3:2:6,且a+2b+c=26.
(1)求abc的值;
(2)若线段x是线段ab的比例中项,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBCD , 下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BDBC . 其中一定能够判定△ABC是直角三角形的有(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ECD均为等边三角形,B、C、D三点在一直线上,AD、BE相交于点F,DF=3,AF=4,则线段FE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件,不能判定△ABC与△DEF相似的是(  )
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°,
D.∠B=∠E=90°, =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点DE分别在BCAC上,且BD=CEADBE相交于点F
(1)试说明△ABD≌△BCE
(2)△EAF与△EBA相似吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点D、E分别是等边△ABCAC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.

(2)如图2,在(1)问的条件下,点HBA的延长线上,连接CHBD延长线于点F.BF=BC,

求证:EH=EC;

请你找出线段AH、AD、DF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.

(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.

查看答案和解析>>

同步练习册答案