精英家教网 > 初中数学 > 题目详情

【题目】已知线段abc满足abc=3:2:6,且a+2b+c=26.
(1)求abc的值;
(2)若线段x是线段ab的比例中项,求x的值.

【答案】
(1)

解答:∵abc=3:2:6,

∴设a=3kb=2kc=6k

又∵a+2b+c=26,

∴3k+2×2k+6k=26,解得k=2,

a=6,b=4,c=12;


(2)

解答:∵xab的比例中项,

x2=ab

x2=4×6,

x=2 x=-2 (舍去),

所以x的值为2


【解析】(1)利用abc=3:2:6,可设a=3kb=2kc=6k , 则3k+2×2k+6k=26,然后解出k的值进一步得到abc的值;(2)根据比例中项的定义得到x2=ab , 即x2=4×6,再由线段的长为正数确定答案.此题考查了比例线段:对于四条线段abcd , 如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
【考点精析】认真审题,首先需要了解比例线段(如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是a/b=m/n,或写成a:b=m:n).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.
(1)求证:AB⊥AE;
(2)若BC2=ADAB,求证:四边形ADCE为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程ax2+3x-1=0有两个不相等的实数根,则a的取值范围是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm , 点P从点A出发,沿AB方向以每秒 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为(  ).

A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,则小方行走的路程AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E分别在线段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,则AB的长为(  )
A.
B.10
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,ABDC , ∠B=90°,EBC上一点,且AEED . 若BC=12,DC=7,BEEC=1:2,

(1)AB
(2)AED的面

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.

(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.

查看答案和解析>>

同步练习册答案