精英家教网 > 初中数学 > 题目详情

已知抛物线y=-x2+2mx-m2-m+2.
(1)直线L:y=-x+2是否经过抛物线的顶点;
(2)设该抛物线与x轴交于M、N两点,当OM•ON=4,且OM≠ON时,求出这条抛物线的解析式.

解:(1)将y=-x2+2mx-m2-m+2配方得:
y=-(x-m)2-m+2,
由此可知,抛物线的顶点坐标是:
(m,-m+2),
把x=m代入y=-x+2得:
y=-m+2,
显然直线y=-x+2经过抛物线y=-x2+2mx-m2-m+2的顶点;

(2)设M、N两点的横坐标分别为x1,x2,则x1,x2是方程,
-x2+2m-m2-m+2=o的两个实数根,
∴x1•x2=m2+m-2,
∵OM•ON=4,
即|x1•x2|=4,
∴m2+m-2=±4,
当m2+m-2=4时,
解得m1=-3,m2=2,
当m=2时,可得:
OM=ON不合题意,
所以m=-3,
当m2+m-2=-4时,
方程设有实数根,
因此所求的抛物线的解析式只能是:
y=-x2-6x-4.
分析:(1)将y=-x2+2mx-m2-m+2配方得出顶点坐标,即可得出直线y=-x+2是否经过二次函数的顶点坐标;
(2)利用根与系数的关系得出x1•x2=m2+m-2,再得出|x1•x2|=4,进而得出m的值,求出二次函数解析即可.
点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的性质,根据解析式求出二次函数的顶点坐标是考查重点同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案