精英家教网 > 初中数学 > 题目详情
11.计算:
(1)$\sqrt{4}$+($\frac{1}{2}$)-1-2cos60°+(2-π)0    
(2)$\frac{{x}^{2}-1}{{x}^{2}+x}$÷(x-$\frac{2x-1}{x}$)

分析 (1)根据负整数指数幂、锐角三角函数和零指数幂可以解答本题;
(2)根据分式的除法和减法可以解答本题.

解答 解:(1)$\sqrt{4}$+($\frac{1}{2}$)-1-2cos60°+(2-π)0
=2+2-2×$\frac{1}{2}$+1
=2+2-1+1
=4;
(2)$\frac{{x}^{2}-1}{{x}^{2}+x}$÷(x-$\frac{2x-1}{x}$)
=$\frac{(x+1)(x-1)}{x(x+1)}×\frac{x}{{x}^{2}-2x+1}$
=$\frac{(x+1)(x-1)}{x(x+1)}×\frac{x}{(x-1)^{2}}$
=$\frac{1}{x-1}$.

点评 本题考查分式的混合运算、实数的运算、锐角三角函数、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)(4x-1)2-9=0
(2)3(x-2)2=2-x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=$\sqrt{3}$米,BE=3米,求拉线CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.完成下列解题过程.
如图.己知CD垂直于AB,FG垂直于AB,∠1=∠2,求证:DE∥BC.
解:因为CD⊥AB,FG⊥FG(已知)
所以∠CDB=∠FGB=90°,
所以CD∥GF(两直线平行,同位角相等).
又因为∠1=∠2(已知),
所以∠2=∠DCB(等量代换)
所以DE∥BC(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列四个数中,其相反数是正整数的是(  )
A.3B.-2C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读下列材料,并解决后面的问题.
材料:我们知道,n个相同的因数a相乘$\underset{\underbrace{a•a…a}}{n}$可记为an,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24=2,log216=4,log264=6.
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N(a>0且a≠1,M>0,N>0)
请你根据幂的运算法则:am=am+n以及对数的定义证明该结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,已知双曲线y=$\frac{k}{x}$(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:
(1)若点A的坐标为(3,1),则点B的坐标为(-3,-1);当x满足:-3≤x<0或x≥3时,$\frac{k}{x}$≤k′x;
(2)如图2,过原点O作另一条直线l,交双曲线y=$\frac{k}{x}$(k>0)于P,Q两点,点P在第一象限.
①四边形APBQ一定是平行四边形;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.
(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,正比例函数y=ax与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点M($\sqrt{6}$,$\sqrt{6}$).
(1)求这两个函数的表达式;
(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.
(3)如图2,点P是反比例函数y=$\frac{k}{x}$(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>$\sqrt{6}$时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在?ABCD中,AC,BD相交于点O,AE⊥BC,垂足为E,EO的延长线交AD于点F,请你猜想四边形AECF是怎样的四边形?证明你的结论.

查看答案和解析>>

同步练习册答案