分析 (1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.
(2)①利用对角线互相平分的四边形是平行四边形证明即可.
②利用分割法求面积即可.
(3)根据矩形的性质、正方形的性质即可判定.
解答 解:(1)∵A、B关于原点对称,A(3,1),
∴点B的坐标为(-3,-1).
由图象可知,当-3≤x<0或x≥3时,$\frac{k}{x}$≤k′x.
故答案为(-3,-1),-3≤x<0或x≥3
(2)①∵A、B关于原点对称,P、Q关于原点对称,
∴OA=OB,OP=OQ,
∴四边形APBQ是平行四边形.
故答案为:平行四边形;
②∵点A的坐标为(3,1),
∴k=3×1=3,
∴反比例函数的解析式为y=$\frac{3}{x}$,
∵点P的横坐标为1,
∴点P的纵坐标为3,
∴点P的坐标为(1,3),
由双曲线关于原点对称可知,点Q的坐标为(-1,-3),点B的坐标为(-3,-1),
如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,
则四边形CDEF是矩形,
CD=6,DE=6,DB=DP=4,CP=CA=2,
则四边形APBQ的面积=矩形CDEF的面积-△ACP的面积-△PDB的面积-△BEQ的面积-△AFQ的面积
=36-2-8-2-8
=16.
(3)mn=k时,四边形APBQ是矩形,
不可能是正方形.
理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.
因为mn=k,易知P、A关于直线y=x对称,所以PO=OA=OB=OQ,所以四边形APBQ是矩形.
点评 本题考查反比例函数综合题、平行四边形的判定和性质、矩形的判定和性质,四边形的面积等知识,解题的关键是学会利用对称的性质解决问题,学会用分割法求面积,学会利用图象确定自变量的取值范围,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com