15£®Èçͼ¢Ù£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OÊÇ×ø±êÔ­µã£¬µãAµÄ×ø±êÊÇ£¨-2£¬3£©£¬µãA×÷AB¡ÍyÖᣬ´¹×ãΪµãB£¬Á¬½Ó0A£¬Å×ÎïÏßy=-x2-2x+c¾­¹ýµãA£¬ÓëxÖáÕý°ëÖá½»ÓÚµãC£®
£¨1£©ÇóCµÄÖµ£»
£¨2£©Èçͼ¢Ú£¬½«¡÷OABÑØÖ±ÏßOA·­ÕÛ£¬¼ÇµãBµÄ¶ÔÓ¦µãΪB£¬Ïò×óƽÒÆÅ×ÎïÏߣ¬Ê¹µãB'Ç¡ºÃÂäÔÚƽÒƺóËæÎïÏߵĶԳÆÖáÉÏ£¬ÉèƽÒƺóÅ×ÎïÏߵĶԳÆÖáΪP£¬Çó³öPµãµÄ×ø±ê£»
£¨3£©Èçͼ¢Û£¬Á¬½ÓBC£®ÉèµãEÔÚxÖáÉÏ£¬µãFÔÚÅ×ÎïÏßÉÏ£®Èç¹ûÒÔµãB¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇëÇó³öµãEµÄ×ø±ê£®

·ÖÎö £¨1£©Èçͼ¢Ù£¬ÀûÓÃAB¡ÍyÖáµÃµ½B£¨0£¬3£©£¬È»ºó°ÑBµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇó³öcµÄÖµ£»
£¨2£©Èçͼ¢Ú£¬ÉèB¡ä£¨a£¬b£©£¬ÀûÓÃÕÛµþµÄÐÔÖʵÃAB¡ä=AB=2£¬OB¡ä=OB=3£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽµÃµ½$\left\{\begin{array}{l}{£¨a+2£©^{2}+£¨b-3£©^{2}={2}^{2}}\\{{a}^{2}+{b}^{2}={3}^{2}}\end{array}\right.$£¬Ôò½â·½³Ì×é¿ÉµÃµ½B¡ä£¨-$\frac{36}{13}$£¬$\frac{15}{13}$£©£¬ÓÚÊÇ¿ÉÈ·¶¨P£»
£¨3£©Èçͼ¢Û£¬ÏÈÈ·¶¨C£¨1£¬0£©£¬ÓÉÓÚBCÖ»ÄÜΪ±ß£¬²»ÄÜΪ¶Ô½ÇÏߣ¬ÔòÓ¦ÓÃEF¡ÎBC£¬EF=BC¿ÉµÃµ½FµãµÄ×Ý×ø±êΪ3»ò-3£¬µ±y=3ʱ£¬-x2-2x+3=3£¬½â·½³ÌÈ·¶¨´ËʱFµãµÄ×ø±êΪ£¨-2£¬3£©£¬ÀûÓÃƽÐÐËıßÐεÄÐÔÖʿɵõ½¶ÔÓ¦Eµã×ø±êΪ£¨-1£¬0£©£»µ±y=-3ʱ£¬-x2-2x+3=-3£¬½âµÃ·½³ÌµÃµ½FµãµÄ×ø±êΪ£¨-1+$\sqrt{7}$£¬-3£©»ò£¨-1-$\sqrt{7}$£¬-3£©£¬ÀûÓÃƽÐÐËıßÐεÄÐÔÖÊ¿ÉÈ·¶¨¶ÔÓ¦µÄEµãµÄ×ø±ê£¨-2+$\sqrt{7}$£¬0£©»ò£¨-2-$\sqrt{7}$£¬0£©£®

½â´ð ½â£º£¨1£©Èçͼ¢Ù£¬
¡ßµãAµÄ×ø±êÊÇ£¨-2£¬3£©£¬µãA×÷AB¡ÍyÖᣬ
¡àB£¨0£¬3£©£¬
°ÑB£¨0£¬3£©´úÈëy=-x2-2x+cµÃc=3£»

£¨2£©Èçͼ¢Ú£¬ÉèB¡ä£¨a£¬b£©£¬
¡ß¡÷OABÑØÖ±ÏßOA·­ÕÛ£¬¼ÇµãBµÄ¶ÔÓ¦µãΪB¡ä£¬
¡àAB¡ä=AB=2£¬OB¡ä=OB=3£¬
¡à$\left\{\begin{array}{l}{£¨a+2£©^{2}+£¨b-3£©^{2}={2}^{2}}\\{{a}^{2}+{b}^{2}={3}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=0}\\{b=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=-\frac{36}{13}}\\{b=\frac{15}{13}}\end{array}\right.$£¬
¡àB¡ä£¨-$\frac{36}{13}$£¬$\frac{15}{13}$£©£¬
¡ßµãB'Ç¡ºÃÂäÔÚƽÒƺóËæÎïÏߵĶԳÆÖáÉÏ£¬
¡àP£¨-$\frac{36}{13}$£¬0£©£»

£¨3£©Èçͼ¢Û£¬Å×ÎïÏß½âÎöʽΪy=-x2-2x+3£¬µ±y=0ʱ£¬-x2-2x+3=0£¬½âµÃx1=1£¬x2=-3£¬ÔòC£¨1£¬0£©£¬
ÒÔµãB¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÔòBCΪ±ß£¬²»ÄÜΪ¶Ô½ÇÏߣ¬
¡àEF¡ÎBC£¬EF=BC£¬
¡àFµãµÄ×Ý×ø±êΪ3»ò-3£¬
µ±y=3ʱ£¬-x2-2x+3=3£¬½âµÃx1=0£¬x2=-2£¬´ËʱFµãµÄ×ø±êΪ£¨-2£¬3£©£¬ËùÒÔEµã×ø±êΪ£¨-1£¬0£©£¬
µ±y=-3ʱ£¬-x2-2x+3=-3£¬½âµÃx1=-1+$\sqrt{7}$£¬x2=-1-$\sqrt{7}$£¬
´ËʱFµãµÄ×ø±êΪ£¨-1+$\sqrt{7}$£¬-3£©»ò£¨-1-$\sqrt{7}$£¬-3£©£¬¶ÔÓ¦µÄEµãµÄ×ø±ê£¨-2+$\sqrt{7}$£¬0£©»ò£¨-2-$\sqrt{7}$£¬0£©£¬
×ÛÉÏËùÊö£¬EµãµÄ×ø±êΪ£¨-1£¬0£©£¬£¨-2+$\sqrt{7}$£¬0£©»ò£¨-2-$\sqrt{7}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢ÕÛµþµÄÐÔÖʺÍƽÐÐËıßÐεÄÐÔÖÊ£»»áÔËÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£»ÄÜÔËÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËãÏ߶εij¤£»»áÓ¦Ó÷ÖÀàÌÖÂÛµÄ˼Ïë½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬Ä³É½ÆÂƳ¤ABΪ110Ã×£¬Æ½ǣ¨¡ÏA£©Îª34¡ã£¬ÇóƸßBC¼°Æ¿íAC£®£¨½á¹û¾«È·µ½0.1Ã×£©
¡¾²Î¿¼Êý¾Ý£ºsin34¡ã=0.559£¬cos34¡ã=0.829£¬tan34¡ã=0.675¡¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐËĸöÊýÖУ¬ÆäÏà·´ÊýÊÇÕýÕûÊýµÄÊÇ£¨¡¡¡¡£©
A£®3B£®-2C£®$\frac{1}{3}$D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ1£¬ÒÑ֪˫ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©ÓëÖ±Ïßy=k¡äx½»ÓÚA¡¢BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£¬ÊԻشðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãAµÄ×ø±êΪ£¨3£¬1£©£¬ÔòµãBµÄ×ø±êΪ£¨-3£¬-1£©£»µ±xÂú×㣺-3¡Üx£¼0»òx¡Ý3ʱ£¬$\frac{k}{x}$¡Ük¡äx£»
£¨2£©Èçͼ2£¬¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©ÓÚP£¬QÁ½µã£¬µãPÔÚµÚÒ»ÏóÏÞ£®
¢ÙËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢ÚÈôµãAµÄ×ø±êΪ£¨3£¬1£©£¬µãPµÄºá×ø±êΪ1£¬ÇóËıßÐÎAPBQµÄÃæ»ý£®
£¨3£©ÉèµãA£¬PµÄºá×ø±ê·Ö±ðΪm£¬n£¬ËıßÐÎAPBQ¿ÉÄÜÊǾØÐÎÂ𣿿ÉÄÜÊÇÕý·½ÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ì½ÇóÒ»ÔªÒ»´Î·½³Ì5x+3=0ÓëÒ»´Îº¯Êýy=5x+3Ö®¼äµÄÁªÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Õý±ÈÀýº¯Êýy=axÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó½»ÓÚµãM£¨$\sqrt{6}$£¬$\sqrt{6}$£©£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ±í´ïʽ£»
£¨2£©Èçͼ1£¬Èô¡ÏAMB=90¡ã£¬ÇÒÆäÁ½±ß·Ö±ðÓÚÁ½×ø±êÖáµÄÕý°ëÖá½»ÓÚµãA¡¢B£®ÇóËıßÐÎOAMBµÄÃæ»ý£®
£¨3£©Èçͼ2£¬µãPÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏóÉÏÒ»µã£¬¹ýµãP×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬PF½»Ö±ÏßOMÓÚµãH£¬¹ý×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪG£®ÉèµãPµÄºá×ø±êΪm£¬µ±m£¾$\sqrt{6}$ʱ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃËıßÐÎPEGHΪÕý·½ÐΣ¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬Ò»¿éÖ±¾¶Îªa+bµÄ°ëÔ²Ðθְ壬´ÓÖÐÍÚÈ¥Ö±¾¶·Ö±ðΪaÓëbµÄÁ½¸ö°ëÔ²
£¨1£©Óú¬a¡¢bµÄ´úÊýʽ±íʾʣϵĸְåµÄÖܳ¤£¨½á¹û±£Áô¦Ð£©
£¨2£©Èôa=15cm£¬b=10cm£¬ÔòʣϵĸְåµÄÖܳ¤ÊǶàÉÙÀåÃ×£¿£¨½á¹û±£ÁôÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼËùʾ£¬ÔÚËıßÐÎABCDÖУ¬¡ÏB=90¡ã£¬AB=2£¬BC=CD=1£¬AD=$\sqrt{6}$£¬ÊÔÇóËıßÐÎABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â·½³Ì£º
£¨1£©ÒÑÖª3£¨$\frac{1}{3}$a2-5ab£©-6£¨5ab-$\frac{1}{3}$a2£©-2£¨$\frac{1}{2}$a2-b2£©£¬ÆäÖÐa=-$\frac{1}{3}$£¬b=2
£¨2£©ÒÑÖª|a-2|+£¨b+1£©2=0£¬cµÄµ¹ÊýÊÇËü±¾Éí£¬Çó$\frac{{c}^{2015}-£¨a+b£©^{2014}}{{b}^{a}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸