20£®Èçͼ£¬Õý±ÈÀýº¯Êýy=axÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó½»ÓÚµãM£¨$\sqrt{6}$£¬$\sqrt{6}$£©£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ±í´ïʽ£»
£¨2£©Èçͼ1£¬Èô¡ÏAMB=90¡ã£¬ÇÒÆäÁ½±ß·Ö±ðÓÚÁ½×ø±êÖáµÄÕý°ëÖá½»ÓÚµãA¡¢B£®ÇóËıßÐÎOAMBµÄÃæ»ý£®
£¨3£©Èçͼ2£¬µãPÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏóÉÏÒ»µã£¬¹ýµãP×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬PF½»Ö±ÏßOMÓÚµãH£¬¹ý×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪG£®ÉèµãPµÄºá×ø±êΪm£¬µ±m£¾$\sqrt{6}$ʱ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃËıßÐÎPEGHΪÕý·½ÐΣ¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©Ê×ÏÈÖ¤Ã÷¡÷AMC¡Õ¡÷BMD£¬ÍƳöSËıßÐÎOCMD=SËıßÐÎOAMB£¬¼´¿É½â¾öÎÊÌ⣮
£¨3£©ÉèPµã×ø±êΪ£¨x£¬$\frac{6}{x}$£©£¬ÔòPE=HG=GE=$\frac{6}{x}$£¬OE=x£¬

½â´ð ½â£º£¨1£©½«µãM£¨$\sqrt{6}$£¬$\sqrt{6}$£©·Ö±ð´øÈëy=axÓëy=$\frac{k}{x}$µÃ£º
$\sqrt{6}$=a$\sqrt{6}$£¬$\sqrt{6}$=$\frac{k}{\sqrt{6}}$£¬
½âµÃ£ºa=1£¬k=6£®
¡àÕâÁ½¸öº¯ÊýµÄ±í´ïʽ·Ö±ðΪ£ºy=x£¬y=$\frac{6}{x}$£®

£¨2£©Èçͼ1ÖУ¬¹ýµãM·Ö±ð×öxÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪC¡¢D£®

Ôò¡ÏMCA=¡ÏMDB=90¡ã£¬¡ÏAMC=¡ÏBMD=90¡ã-¡ÏAMD£¬MC=MD=$\sqrt{6}$£¬
¡à¡÷AMC¡Õ¡÷BMD£¬
¡àSËıßÐÎOCMD=SËıßÐÎOAMB=6£®

£¨3£©ÉèPµã×ø±êΪ£¨x£¬$\frac{6}{x}$£©£¬ÔòPE=HG=GE=$\frac{6}{x}$£¬OE=x£¬

¡ß¡ÏMOE=45¡ã£¬
¡àOG=GH=$\frac{6}{x}$£¬
¡àOE=OG+GH=$\frac{12}{x}$£¬
¡àx=$\frac{12}{x}$£¬
½âµÃx=2$\sqrt{3}$£¬
¡àPµã×ø±êΪ£¨2$\sqrt{3}$£¬$\sqrt{3}$£©£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢Õý±ÈÀýº¯ÊýµÄÓ¦Óá¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Õý·½ÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÌí¼Ó¸¨ÖúÏß¹¹ÔìÈ«µÈÈý½ÇÐνâ¾öÎÊÌ⣬ѧ»áÀûÓòÎÊý¹¹½¨·½³Ì½â¾öÎÊÌ⣬ÊôÓÚÖп¼³£Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐËĸöͼÐÎÖУ¬¼ÈÊÇÖá¶Ô³ÆͼÐÎÓÖÊÇÖÐÐĶԳÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®
µÈ±ßÈý½ÇÐÎ
B£®
ƽÐÐËıßÐÎ
C£®
ÕýÁù±ßÐÎ
D£®
Îå½ÇÐÇ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¼ÆË㣺
£¨1£©$\sqrt{4}$+£¨$\frac{1}{2}$£©-1-2cos60¡ã+£¨2-¦Ð£©0    
£¨2£©$\frac{{x}^{2}-1}{{x}^{2}+x}$¡Â£¨x-$\frac{2x-1}{x}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐͼÐÎÖÐÊÇÖá¶Ô³ÆͼÐΣ¬µ«²»ÊÇÖÐÐĶԳÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ¢Ù£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OÊÇ×ø±êÔ­µã£¬µãAµÄ×ø±êÊÇ£¨-2£¬3£©£¬µãA×÷AB¡ÍyÖᣬ´¹×ãΪµãB£¬Á¬½Ó0A£¬Å×ÎïÏßy=-x2-2x+c¾­¹ýµãA£¬ÓëxÖáÕý°ëÖá½»ÓÚµãC£®
£¨1£©ÇóCµÄÖµ£»
£¨2£©Èçͼ¢Ú£¬½«¡÷OABÑØÖ±ÏßOA·­ÕÛ£¬¼ÇµãBµÄ¶ÔÓ¦µãΪB£¬Ïò×óƽÒÆÅ×ÎïÏߣ¬Ê¹µãB'Ç¡ºÃÂäÔÚƽÒƺóËæÎïÏߵĶԳÆÖáÉÏ£¬ÉèƽÒƺóÅ×ÎïÏߵĶԳÆÖáΪP£¬Çó³öPµãµÄ×ø±ê£»
£¨3£©Èçͼ¢Û£¬Á¬½ÓBC£®ÉèµãEÔÚxÖáÉÏ£¬µãFÔÚÅ×ÎïÏßÉÏ£®Èç¹ûÒÔµãB¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇëÇó³öµãEµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Á½¸ö·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k£¾1£©ºÍy=$\frac{1}{x}$ÔÚµÚÒ»ÏóÏÞÄÚµÄͼÏóÈçͼËùʾ£¬µãPÔÚy=$\frac{k}{x}$£¨µÄͼÏóÉÏ£¬PC¡ÍxÖáÓÚµãC£¬½»y=$\frac{1}{x}$µÄͼÏóÓÚµãA£¬PD¡ÍyÖáÓÚµãD£¬½»y=$\frac{1}{x}$µÄͼÏóÓÚµãB£¬BE¡ÍxÖáÓÚµãE£¬µ±µãPÔÚy=$\frac{k}{x}$£¨µÄͼÏóÉÏÔ˶¯Ê±£¬ÒÔϽáÂÛ£º¢ÙBAÓëDCʼÖÕƽÐУ»¢ÚPAÓëPBʼÖÕÏàµÈ£»¢ÛËıßÐÎPAOBµÄÃæ»ý²»»á·¢Éú±ä»¯£»¢Ü¡÷OBAµÄÃæ»ýµÈÓÚËıßÐÎ
ACEBµÄÃæ»ý£®ÆäÖÐÒ»¶¨ÕýÈ·µÄÊǢ٢ۢܣ¨ÌîдÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬¡÷ABCÊǵȱßÈý½ÇÐΣ¬¸ßAD¡¢BEÏཻÓÚµãH£¬BC=4£¬ÔÚBEÉϽØÈ¡BG=2£¬ÒÔGEΪ±ß×÷µÈ±ßÈý½ÇÐÎGEF£¬Ôò¡÷ABHÓë¡÷GEFÖصþ£¨ÒõÓ°£©²¿·ÖµÄÃæ»ýΪ$\frac{\sqrt{3}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¶þ´Îº¯Êýy=£¨t-4£©x2-£¨2t-5£©x+4ÔÚx=0Óëx=5µÄº¯ÊýÖµÏàµÈ
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èô¶þ´Îº¯ÊýµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¨AÔÚB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬Ò»´Îº¯Êýy=kx+b¾­¹ýµãB£¬CÁ½µã£¬ÇóÒ»´Îº¯ÊýµÄ±í´ïʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ý¶¯µãD£¨0£¬m£©×÷Ö±Ïßl¡ÎxÖᣬÆäÖÐm£¾-2£®½«¶þ´Îº¯ÊýµÄÏñÔÚÖ±ÏßlÏ·½µÄ²¿·ÖÑØÖ±ÏßlÏòÉÏ·­ÕÛ£¬ÆäÓಿ·Ö±£³Ö²»±ä£¬µÃµ½Ò»¸öÐÂͼÏóM£®ÈôÖ±Ïßy=kx+bÓëÐÂͼÏóMÇ¡ÓÐÁ½¸ö¹«¹²µã£¬ÇëÖ±½Óд³ömµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®²»ÀÀÒ¹¾°£¬Î´µ½ÖØÇ죮ɽ³ÇÒ¹¾°£¬ÔçÔÚÇåǬ¡ʱÆÚ¾ÍÒÑÓÐÃûÆø£¬±»Ê±ÈΰÍÏØÖªÏØÍõ¶û¼ø£¬ÁÐΪ°ÍÓåÊ®¶þ¾°Ö®Ò»£®ÔÚ³¯ÌìÃÅÂëÍ·×ø´¬ÓÎÁ½½­£¨¼´³¤½­¡¢¼ÎÁê½­£©£¬ÊÇÓÎÖØÇìÉÍÒ¹¾°µÄÒ»¸ö¾­µäÏîÄ¿£®Ò»ËÒÂÖ´¬´Ó³¯ÌìÃÅÂëÍ·³ö·¢ÔÈËÙÐÐÊ»£¬1СʱºóÒ»ËÒ¿ìͧҲ´Ó³¯ÌìÃÅÂëÍ·³ö·¢ÑØͬһÏß·ÔÈËÙÐÐÊ»£¬µ±¿ìͧÏȵ½´ïÄ¿µÄµØºóÁ¢¿Ì°´Ô­ËÙ·µ»Ø²¢ÔÚ;ÖÐÓëÂÖ´¬µÚ¶þ´ÎÏàÓö£®ÉèÂÖ´¬ÐÐÊ»µÄʱ¼äΪt£¨h£©£¬¿ìͧºÍÂÖ´¬Ö®¼äµÄ¾àÀëΪy£¨km£©£¬yÓëtµÄº¯Êý¹ØϵʽÈçͼËùʾ£®ÎÊ¿ìͧÓëÂÖ´¬µÚ¶þ´ÎÏàÓöʱµ½³¯ÌìÃÅÂëÍ·µÄ¾àÀëΪ55ǧÃ×£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸