精英家教网 > 初中数学 > 题目详情
10.下列四个图形中,既是轴对称图形又是中心对称图形的是(  )
A.
等边三角形
B.
平行四边形
C.
正六边形
D.
五角星

分析 根据轴对称图形与中心对称图形的概念求解.

解答 解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故此选项不合题意;
B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故此选项不合题意;
C、是轴对称图形,又是中心对称图形.故此选项符合题意;
D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故此选项不合题意.
故选:C.

点评 此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,已知⊙O1与⊙O2交于A,B两点,点C在⊙O1上且在⊙O2外,CA,CB的延长线分别与⊙O2交于点D,E,AC=3,AD=6,⊙O1的半径为2.则点O1到DE的距离为 (  )
A.$\frac{17}{4}$B.$\frac{9}{2}$C.$\frac{19}{4}$D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)(4x-1)2-9=0
(2)3(x-2)2=2-x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与走步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.
(1)求图中的a值.
(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.
①求AB所在直线的函数解析式;
②请你直接回答,此人走完全程所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,某山坡坡长AB为110米,坡角(∠A)为34°,求坡高BC及坡宽AC.(结果精确到0.1米)
【参考数据:sin34°=0.559,cos34°=0.829,tan34°=0.675】

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若a2+a=0,则2a2+2a+2016的值为2016.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=$\sqrt{3}$米,BE=3米,求拉线CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.完成下列解题过程.
如图.己知CD垂直于AB,FG垂直于AB,∠1=∠2,求证:DE∥BC.
解:因为CD⊥AB,FG⊥FG(已知)
所以∠CDB=∠FGB=90°,
所以CD∥GF(两直线平行,同位角相等).
又因为∠1=∠2(已知),
所以∠2=∠DCB(等量代换)
所以DE∥BC(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,正比例函数y=ax与反比例函数y=$\frac{k}{x}$(x>0)的图象交于点M($\sqrt{6}$,$\sqrt{6}$).
(1)求这两个函数的表达式;
(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.
(3)如图2,点P是反比例函数y=$\frac{k}{x}$(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>$\sqrt{6}$时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案