C
分析:由抛物线与x轴交点的特点求得n2-2012n+2013=0,m2-2012m+2013=0,且m、n是关于x的方程x2-2012x+2013=0的两个根;由此求得
n2-2011n+2013=n,m2-2011m+2013=m,mn=2013,所以将其代入所求的代数式求值即可.
解答:∵抛物线y=x2-2012x+2013与x轴的两个交点是(m,0)、(n,0),
∴n2-2012n+2013=0,m2-2012m+2013=0,且m、n是关于x的方程x2-2012x+2013=0的两个根,
∴n2-2011n+2013-n=0,m2-2011m+2013-m=0,mn=2013,
∴n2-2011n+2013=n,m2-2011m+2013=m.
∴(m2-2011m+2013)•(n2-2011n+2013)=mn=2013.
故选:C.
点评:本题考查了抛物线与x轴的交点.解题时,注意二次函数与一元二次方程间的转化.