精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线y=kx+b分别与x轴、y轴交于A、B两点,过点B的抛物线y=﹣ (x﹣2)2+m的顶点P在这条直线上,以AB为边向下方做正方形ABCD.

(1)当m=2时,k= , b=;当m=﹣1时,k= , b=
(2)根据(1)中的结果,用含m的代数式分别表示k与b,并证明你的结论;
(3)当正方形ABCD的顶点C落在抛物线的对称轴上时,求对应的抛物线的函数关系式;
(4)当正方形ABCD的顶点D落在抛物线上时,直接写出对应的直线y=kx+b的函数关系式.

【答案】
(1)解: ;1;;﹣2
(2)

解:k= ,b=m﹣1.

证明:∵y=﹣ (x﹣2)2+m,

∴抛物线的顶点坐标为(2,m).

把x=0代入得:y=m﹣1.

∴b=m﹣1.

设直线AB的解析式为y=kx+m﹣1.

将x=2,y=m代入得:2k+m﹣1=m,解得k=


(3)

解:如图1所示,过点C作CE⊥y轴,垂足为E.

∵ABCD为正方形,

∴AB=BC,∠ABE+∠EBC=90°.

又∵∠ABO+∠BAO=90°,

∴∠BAO=∠EBC.

在△ABO和△BCE中

∴△ABO≌△BCE.

∴EC=OB=2.

∴m﹣1=2.

∴m=3.

∴抛物线的解析式为y=﹣ (x﹣2)2+3


(4)

解:如图2所示当点B在y轴的正半轴上时,过点D作DE⊥x轴与点E.

由(2)可知:直线AB的解析式为y= x+m﹣1.

当x=0时,y=m﹣1,当y=0时,x=2﹣2m.

∴OA=2m﹣2,OB=m﹣1.

∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,

∴∠BAO=∠ADE.

在△ABO和△DAE中

∴△ABO≌△DAE.

∴AE=OB=1﹣m,ED=AO=2m﹣2.

∴D(1﹣m,2﹣2m).

∵点D在抛物线上,

∴2﹣2m=﹣ (﹣m﹣1)2+m,解得m=9或m=1(舍去).

∴直线的解析式为y= x+9.

如图3所示:当点B在y轴的负半轴上时,

当x=0时,y=m﹣1,当y=0时,x=2﹣2m.

∴OA=2﹣2m,OB=1﹣m.

∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,

∴∠BAO=∠ADE.

在△ABO和△DAE中

∴△ABO≌△DAE.

∴AE=OB,ED=AO.

∴D(3﹣3m,2m﹣2).

∵点D在抛物线上,

∴2m﹣2=﹣ (1﹣3m)2+m,解得m=﹣ 或m=1(舍去).

∴直线的解析式为y= x﹣

综上所述,直线的解析式为y= x+9或y= x﹣


【解析】解:(1)当m=2时,y=﹣ (x﹣2)2+2,
∴P(2,2).
把x=0代入得:y=1,
∴B(0,1).
设直线AB的解析式为y=kx+1,
将点P的坐标(2,2)代入得:2k+1=2,解得:k=
∴k= ,b=1.
当m=﹣1时,y=﹣ (x﹣2)2﹣1.
∴P(2,﹣1).
把x=0代入得:y=﹣2,
∴B(0,﹣2).
设直线AB的解析式为y=kx﹣2,
将点P的坐标(2,﹣1)代入得:2k﹣2=﹣1,解得:k=
∴k= ,b=﹣2.
故答案为: ;1; ;﹣2.
(1)将m的值代入可求得点P的坐标,将x=0代入求得y的值,从而可得到点B的坐标,然后利用待定系数法可求得直线AB的解析式;(2)由函数解析式得到点P的坐标,将x=0代入可求得y的值,从而得到点B的坐标,然后利用待定系数法求得AB的解析式,从而得到k、b的值;(3)过点C作CE⊥y轴,垂足为E.然后证明△ABO≌△BCE,从而可得到点B的坐标,然后由点B的坐标可求得点m的值;(4)当点B在y轴的正半轴上时,过点D作DE⊥x轴与点E.然后证明△ABO≌△DAE,从而可得到点D的坐标,然后将点D的坐标代入函数解析式可求得m的值,从而得到直线AB的解析式;当点B在y轴的负半轴上时,证明△ABO≌△DAE,从而可得到点D的坐标,然后将点D的坐标代入函数解析式可求得m的值,从而得到直线AB的解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

数轴上表示41的两点之间的距离是3:而|4-1|=3;表示-32两点之间的距离是5:而|-3-2|=5;表示-4-7两点之间的距离是3,而|-4-(-7)|=3.

一般地,数轴上表示数m和数n的两点之间的距离公式为|m-n|.

(1)数轴上表示数-5的点与表示-2的点之间的距离为______;

(2)数轴上表示数a的点与表示-4的点之间的距离表示为______;若数轴上a位于-42之间,求|a+4|+|a-2|的值;

(3)如果表示数a3的两点之间的距离是7,则可记为:|a-3|=7,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?

(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?

(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为原点,已知数轴上点A和点B所表示的数分别为﹣10和6,动点P从点A出发,以每秒6个单位长度的速度沿数轴正方向匀速运动,同时动点Q从点B出发,以每秒3个单位的速度沿数轴负方向匀速运动,设运动时间为t(t>0)秒

(1)当t=2时,求AP的中点C所对应的数;

(2)当PQ=OA时,求点Q所对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BCD、E.

(1)若BC=10,则△ADE周长是多少?为什么?

(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,直线ABx轴负半轴交于点A(a,0),与 y轴正半轴交于点B(0,b),且+|b﹣4|=0.

(1)求△AOB的面积;

(2)如图2,若P为直线AB上一动点,连接OP,且2SAOP≤SBOP≤3SAOP,求P点横坐标xP的取值范围;

(3)如图3,点C在第三象限的直线AB上,连接OC,OEOCO,连接CEy 轴于点D,连接ADOE的延长线于F,则∠OAD、ADC、CEF、AOC之间是否有某种确定的数量关系?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC∠C=90°DAB的中点,DE⊥DF,点EF分别在ACBC上,求证:DE=DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.C点的坐标是 , △ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图1,在四边形ABCD中,DC∥ABAD=BCBD平分∠ABC

1)求证:AD=DC

2)如图2,在上述条件下,若∠A=∠ABC=60°,过点DDE⊥AB,过点CCF⊥BD,垂足分别为EF,连接EF.判断△DEF的形状并证明你的结论.

查看答案和解析>>

同步练习册答案