【题目】如图,在平面直角坐标系中,直线y=kx+b分别与x轴、y轴交于A、B两点,过点B的抛物线y=﹣ (x﹣2)2+m的顶点P在这条直线上,以AB为边向下方做正方形ABCD.
(1)当m=2时,k= , b=;当m=﹣1时,k= , b=;
(2)根据(1)中的结果,用含m的代数式分别表示k与b,并证明你的结论;
(3)当正方形ABCD的顶点C落在抛物线的对称轴上时,求对应的抛物线的函数关系式;
(4)当正方形ABCD的顶点D落在抛物线上时,直接写出对应的直线y=kx+b的函数关系式.
【答案】
(1)解: ;1;;﹣2
(2)
解:k= ,b=m﹣1.
证明:∵y=﹣ (x﹣2)2+m,
∴抛物线的顶点坐标为(2,m).
把x=0代入得:y=m﹣1.
∴b=m﹣1.
设直线AB的解析式为y=kx+m﹣1.
将x=2,y=m代入得:2k+m﹣1=m,解得k=
(3)
解:如图1所示,过点C作CE⊥y轴,垂足为E.
∵ABCD为正方形,
∴AB=BC,∠ABE+∠EBC=90°.
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠EBC.
在△ABO和△BCE中 ,
∴△ABO≌△BCE.
∴EC=OB=2.
∴m﹣1=2.
∴m=3.
∴抛物线的解析式为y=﹣ (x﹣2)2+3
(4)
解:如图2所示当点B在y轴的正半轴上时,过点D作DE⊥x轴与点E.
由(2)可知:直线AB的解析式为y= x+m﹣1.
当x=0时,y=m﹣1,当y=0时,x=2﹣2m.
∴OA=2m﹣2,OB=m﹣1.
∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,
∴∠BAO=∠ADE.
在△ABO和△DAE中 ,
∴△ABO≌△DAE.
∴AE=OB=1﹣m,ED=AO=2m﹣2.
∴D(1﹣m,2﹣2m).
∵点D在抛物线上,
∴2﹣2m=﹣ (﹣m﹣1)2+m,解得m=9或m=1(舍去).
∴直线的解析式为y= x+9.
如图3所示:当点B在y轴的负半轴上时,
当x=0时,y=m﹣1,当y=0时,x=2﹣2m.
∴OA=2﹣2m,OB=1﹣m.
∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,
∴∠BAO=∠ADE.
在△ABO和△DAE中 ,
∴△ABO≌△DAE.
∴AE=OB,ED=AO.
∴D(3﹣3m,2m﹣2).
∵点D在抛物线上,
∴2m﹣2=﹣ (1﹣3m)2+m,解得m=﹣ 或m=1(舍去).
∴直线的解析式为y= x﹣ .
综上所述,直线的解析式为y= x+9或y= x﹣
【解析】解:(1)当m=2时,y=﹣ (x﹣2)2+2,
∴P(2,2).
把x=0代入得:y=1,
∴B(0,1).
设直线AB的解析式为y=kx+1,
将点P的坐标(2,2)代入得:2k+1=2,解得:k= .
∴k= ,b=1.
当m=﹣1时,y=﹣ (x﹣2)2﹣1.
∴P(2,﹣1).
把x=0代入得:y=﹣2,
∴B(0,﹣2).
设直线AB的解析式为y=kx﹣2,
将点P的坐标(2,﹣1)代入得:2k﹣2=﹣1,解得:k= .
∴k= ,b=﹣2.
故答案为: ;1; ;﹣2.
(1)将m的值代入可求得点P的坐标,将x=0代入求得y的值,从而可得到点B的坐标,然后利用待定系数法可求得直线AB的解析式;(2)由函数解析式得到点P的坐标,将x=0代入可求得y的值,从而得到点B的坐标,然后利用待定系数法求得AB的解析式,从而得到k、b的值;(3)过点C作CE⊥y轴,垂足为E.然后证明△ABO≌△BCE,从而可得到点B的坐标,然后由点B的坐标可求得点m的值;(4)当点B在y轴的正半轴上时,过点D作DE⊥x轴与点E.然后证明△ABO≌△DAE,从而可得到点D的坐标,然后将点D的坐标代入函数解析式可求得m的值,从而得到直线AB的解析式;当点B在y轴的负半轴上时,证明△ABO≌△DAE,从而可得到点D的坐标,然后将点D的坐标代入函数解析式可求得m的值,从而得到直线AB的解析式.
科目:初中数学 来源: 题型:
【题目】结合数轴与绝对值的知识回答下列问题:
数轴上表示4和1的两点之间的距离是3:而|4-1|=3;表示-3和2两点之间的距离是5:而|-3-2|=5;表示-4和-7两点之间的距离是3,而|-4-(-7)|=3.
一般地,数轴上表示数m和数n的两点之间的距离公式为|m-n|.
(1)数轴上表示数-5的点与表示-2的点之间的距离为______;
(2)数轴上表示数a的点与表示-4的点之间的距离表示为______;若数轴上a位于-4与2之间,求|a+4|+|a-2|的值;
(3)如果表示数a和3的两点之间的距离是7,则可记为:|a-3|=7,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?
(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为原点,已知数轴上点A和点B所表示的数分别为﹣10和6,动点P从点A出发,以每秒6个单位长度的速度沿数轴正方向匀速运动,同时动点Q从点B出发,以每秒3个单位的速度沿数轴负方向匀速运动,设运动时间为t(t>0)秒
(1)当t=2时,求AP的中点C所对应的数;
(2)当PQ=OA时,求点Q所对应的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,则△ADE周长是多少?为什么?
(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与 y轴正半轴交于点B(0,b),且+|b﹣4|=0.
(1)求△AOB的面积;
(2)如图2,若P为直线AB上一动点,连接OP,且2S△AOP≤S△BOP≤3S△AOP,求P点横坐标xP的取值范围;
(3)如图3,点C在第三象限的直线AB上,连接OC,OE⊥OC于O,连接CE交y 轴于点D,连接AD交OE的延长线于F,则∠OAD、∠ADC、∠CEF、∠AOC之间是否有某种确定的数量关系?试证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.C点的坐标是 , △ABC的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求证:AD=DC;
(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com