【题目】(本小题满分12分)如图,在平面直角坐标系中,矩形ABCO的OA边在轴上,OC边在轴上,且B点坐标为(4,3).动点M、N分别从点O、B同时出发,以1单位/秒的速度运动(点M沿OA向终点A运动,点N沿BC向终点C运动),过点N作NP∥AB交AC于点P,连结MP.
(1)直接写出OA、AB的长度;
(2)试说明△CPN∽△CAB;
(3)在两点的运动过程中,请求出ΔMPA的面积S与运动时间的函数关系式;
(4)在运动过程中,△MPA的面积S是否存在最大值?若存在,请求出当为何值时有最大值,并求出最大值;若不存在,请说明理由.
【答案】(1)OA=4,AB=3;(2)证明见解析;(3);(4)存在,当=2时有最大值,最大值为.
【解析】试题分析:(1)由矩形的性质,以及B点坐标为(4,3),可直接的出OA、AB的长度;
(2)根据过点N作NP∥AB交AC于点P,直接可得出三角形相似;
(3)用t表示出P点的坐标,可以得出S的关系式;
(4)利用公式可直接得出当t=﹣=2时,二次函数有最大值.
试题解析:解:(1)∵矩形ABCO的OA边在x 轴上,OC边在y轴上,且B点坐标为(4,3),∴OA=4,AB=3;
(2)∵NP∥AB,∴△CPN∽△CAB;
(3)∵P点的横坐标是4﹣t,求出CA的直线为,代入P的横坐标得到P的纵坐标, ,所以P的坐标为(4﹣t, ),∴S△MPA=MA×yP÷2= ×(4﹣t)×= ,t≤4;
(4)由S关于t的函数,当t=﹣=2时,二次函数有最大值=.
科目:初中数学 来源: 题型:
【题目】某地某天最高气温是33 ℃,最低气温是22 ℃,则当天该地气温t(℃)的变化范围可用不等式表示为( )
A. t≥22 B. t≤22 C. 22<t<33 D. 22≤t≤33
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知AB=24cm,CD=8cm.
(1)求作此残片所在的圆(不写作法,保留作图痕迹)
(2)求残片所在圆的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N.
求证:(1)AE=CG;
(2)ANDN=CNMN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线的函数表达式为,它与轴、轴的交点分别为A、B两点.
(1)求点A、B的坐标;
(2)设F是轴上一动点,⊙P经过点B且与轴相切于点F,设⊙P的圆心坐标为P(x,y),求y与之间的函数关系;
(3)是否存在这样的⊙P,既与轴相切,又与直线相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com