精英家教网 > 初中数学 > 题目详情

【题目】如图,直线x-2y=-5和x+y=1分别与x轴交于A、B两点,这两条线的交点为P.
(1)求点P的坐标.
(2)求△APB的面积.

【答案】解:(1)根据题意,x-2y=-5①;x+y=1②,
②-①得,3y=6,
解得y=2,
把y=2代入②得,x+2=1,
解得x=-1,
∴点P的坐标是P(-1,2);
(2)当y=0时,x-0=-5,解得x=-5,
x+0=1,解得x=1,
∴点A、B的坐标是A(-5,0),B(1,0),
∴AB=1-(-5)=6,
△APB的面积=×6×2=6。
【解析】(1)联立两直线的解析式组成关于x、y的二元一次方程组,求解即可;
(2)求出点A、B的坐标,从而得到线段AB的长度,点P的总坐标为三角形的高,然后根据三角形的面积公式列式计算即可求解。
【考点精析】利用三角形的面积对题目进行判断即可得到答案,需要熟知三角形的面积=1/2×底×高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于反比例函数y=﹣ ,下列说法不正确的是(
A.图象经过点(1,﹣3)
B.图象分布在第二、四象限
C.当x>0时,y随x的增大而增大
D.点A(x1 , y1)、B(x2、y2)都在反比例函数y=﹣ 的图象上,若x1<x2 , 则y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y= 的图象可能是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是(  )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,BAC=30°,ABC的面积为49,P为直线BC上一点,PEAB,PFAC,CHAB,垂足分别为E,F,H.若PF=3,则PE=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任取不等式组 的一个整数解,则能使关于x的方程:2x+k=﹣1的解为非负数的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)

(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最多需要   个小立方块.

查看答案和解析>>

同步练习册答案