【题目】如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=cm.
【答案】8
【解析】解:∵四边形ABCD是矩形,
∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠A′CB,
由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,
∴A′B=CD,∠BA′C=∠D=90°,
在△A′BC和△DCE中,
,
∴△A′BC≌△DCE(AAS),
∴A′C=DE,
设A′C=xcm,则BC=AD=DE+AE=x+9(cm),
在Rt△A′BC中,BC2=A′B2+A′C2 ,
即(x+9)2=x2+152 ,
解得:x=8,
∴A′C=8cm.
故答案为:8.
由题意易证得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后设A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2 , 即可得方程,解方程即可求得答案.
科目:初中数学 来源: 题型:
【题目】如图,已知直线l∥AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABCD的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3或7.其中正确的是( )
A. ①②④ B. ①③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:(1)相反数是本身的数是正数;(2)两数相减,差小于被减数;(3)绝对值等于它相反数的数是负数;(4)倒数是它本身的数是1;(5)若,则a=b;(6)没有最大的正数,但有最大的负整数.其中正确的个数( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两工程队同时修筑水渠,且两队所修水渠总长度相等.如图是两队所修水渠长度y(米)与修筑时间x(时)的函数图象的一部分.请根据图中信息,解答下列问题:
(1)①直接写出甲队在0≤x≤5的时间段内,y与x之间的函数关系式;
②直接写出乙队在2≤x≤5的时间段内,y与x之间的函数关系式;
(2)求开修几小时后,乙队修筑的水渠长度开始超过甲队?
(3)如果甲队施工速度不变,乙队在修筑5小时后,施工速度因故减少到5米/时,结果两队同时完成任务,求乙队从开修到完工所修水渠的长度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣3,1),B(1, )是一次函数的图象与反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的表达式;
(2)根据图象直接写出使一次函数的函数值小于反比例函数的函数值的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据三视图求几何体的表面积.
下列各图是棱长为的小正方体摆成的,如图①中,共有个小正方体,从正面看有个正方形,表面积为;如图②中,共有个小正方体,从正面看有个正方形,表面积为;如图③,共有个小正方体,从正面看有个正方形,表面积为;…
第个图中,共有多少个小正方体?从正面看有多少个正方形?表面积是多少?
第个图形中,从正面看有多少个正方形?表面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么这两次拐弯的角度是( )
A. 第一次向右拐40, 第二次向左拐140
B. 第一次向左拐40, 第二次向右拐40
C. 第一次向左拐40, 第二次向左拐140
D. 第一次向右拐40, 第二次向右拐40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东24.5°方向,轮船向正东航行了2400m,到达Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.
(1)线段BQ与PQ是否相等?请说明理由;
(2)求A、B间的距离(参考数据cos41°=0.75).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com