精英家教网 > 初中数学 > 题目详情

一块矩形菜地的面积是120m2,如果它的长减少2cm,那么菜地就变成正方形,则原菜地的长是 m.

 

12.

【解析】

试题分析:根据“如果它的长减少2m,那么菜地就变成正方形”可以得到长方形的长比宽多2米,利用矩形的面积公式列出方程求解即可:

长减少2m,菜地就变成正方形,设原菜地的长为x米,则宽为(x﹣2)米,

根据题意得:x(x﹣2)=120,

解得:x=12或x=﹣10(舍去).

原菜地的长是12m.

考点:一元二次方程的应用(几何问题).

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(江苏徐州卷)数学(解析版) 题型:解答题

如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EGEF,EG与圆O相交于点G,连接CG.

(1)试说明四边形EFCG是矩形;

(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,

矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;

求点G移动路线的长.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:填空题

因式分【解析】
= .

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:解答题

如图,在直角梯形ABCD中,ABDC,ABC=90°,AB=8cm.BC=4cm,CD=5cm.动点P从点B开始沿折线BC﹣CD﹣DA以1cm/s的速度运动到点A.设点P运动的时间为t(s),

PAB面积为S(cm2).

(1)当t=2时,求S的值;

(2)当点P在边DA上运动时,求S关于t的函数表达式;

(3)当S=12时,求t的值.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:计算题

计算:

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:选择题

若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:填空题

2014年南京青奥会某项目6名礼仪小姐身高如下(单位:cm:168,166,168,167,169,168,则他们身高的众数是 cm,极差是 cm.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西百色卷)数学(解析版) 题型:解答题

如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DEBF,1=2.

(1)求证:AED≌△CFB;

(2)若ADCD,四边形ABCD是什么特殊四边形?请说明理由.

 

 

查看答案和解析>>

同步练习册答案