精英家教网 > 初中数学 > 题目详情
9.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是(  )
A.B.C.D.

分析 根据题意得出y是x的反比例函数,容易得出函数的图象.

解答 解:根据题意得:xy=10,
∴y=$\frac{10}{x}$,
即y是x的反比例函数,图象是双曲线,
∵10>0,x>0,
∴函数图象是位于第一象限的曲线;
故选:C.

点评 本题考查了矩形面积的计算、反比例函数的性质以及图象;熟练掌握反比例函数的性质是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,△ABC中,AD、AE分别是△ABC的高和角平分线,∠B=40°,∠DAE=12°.求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分别过点A1,A2,A3,…An′作x轴的垂线交二次函数y=$\frac{1}{2}$x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,则S3=$\frac{5}{4}$,最后记△Pn-1Bn-1Pn(n>1)的面积为Sn,则Sn==$\frac{2n-1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=-$\sqrt{3}$x2+2$\sqrt{3}$x和y=$\sqrt{3}$x2+2$\sqrt{3}$x(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;
(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.抛物线y=-3(x+5)2-6关于x轴对称的抛物线的解析式为y=3(x+5)2+6.

查看答案和解析>>

同步练习册答案