精英家教网 > 初中数学 > 题目详情
17.如图,矩形ABCD的两邻边长分别为一元二次方程x2-7x+12=0的两个实数根,则矩形ABCD的面积为12.

分析 利用根与系数的关系得出两根的积为12,即是矩形ABCD的两邻的积,然后利用面积计算公式求得答案即可.

解答 解:∵设矩形ABCD的两邻边长分别为α、β是一元二次方程x2-7x+12=0的两个实数根,
∴αβ=12,
∴矩形ABCD的面积为12.
故答案为:12.

点评 本题考查了一元二次方程的解法以及矩形的性质,正确解方程求得矩形的边长是关键.解一元二次方程的基本思想是降次.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.方程(m-2)x|m|-5x+m-3=0是一元二次方程,则m=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF=1或9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某商场要经营一种新上市的玩具,进价为20元/件,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)求销售单价为多少元时,该玩具每天的销售利润是2000元;
(2)如果按照高于进价的a元/件和b元/件销售时(a≠b,且不同于上题中的销售单价),销售利润都是c元,请你提供这样一组满足条件的a、b、c的值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠ACB=90°,AC=BC=2$\sqrt{2}$,将△ABC绕着点C逆时针旋转45°后得到△DEC,AB、DE交于点F,CD交AB于M,CB交DE于N.
(1)求证:四边形AFEC是菱形;
(2)求四边形CMFN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在Rt△ABC中,∠ACB=90°,AC=2.点D、E分别在边BC、AB上,ED⊥BC,以AE为半径的⊙A交DE的延长线于点F.
(1)当D为边BC中点时(如图1),求弦EF的长;
(2)设$\frac{DC}{BC}=x$,EF=y,求y关于x的函数解析式及定义域;(不用写出定义域);
(3)若DE过△ABC的重心,分别联结BF、AF、CE,当∠AFB=90°时(如图2),求$\frac{CE}{AB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图:已知菱形ABCD中,对角线AC和BD相交于点O,AC=8,BD=6,动点P在边AB上运动,以点O为圆心,OP为半径作⊙O,CQ切⊙O于点Q.则在点P运动过程中,切线CQ的长的最大值为$\frac{16}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知a、b是一元二次方程x2-2x-3=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列说法中,正确的有(  )个.
①全等三角形的对应角相等
②全等三角形的对应边相等
③全等三角形的周长相等
④相似三角形的对应角相等
⑤相似三角形的对应边成比例.
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案