【题目】如图,矩形BCDE的各边分别平行于轴或轴,物体甲和物体乙由点(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标
是( )
A. (-1,1) B. (1,-1) C. (-2,0) D. (-1,-1)
【答案】D
【解析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每次相遇的地点,找出规律即可解答.
解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇…
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵2015÷3=671…2,
故两个物体运动后的第2014次相遇地点的是:第二次相遇地点,
即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,
此时相遇点的坐标为:(-1,-1),
科目:初中数学 来源: 题型:
【题目】如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)试说明:AB∥CD;
(2)若∠2=25°,求∠BFC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(___ ___)
∴∠2=∠CGD(等量代换)
∴CE∥BF(__ ___)
∴∠____ ____=∠BFD(___ ____)
又∵∠B=∠C(已知)
∴____ ____(等量代换)
∴AB∥CD(___ ____)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,若点P(4,3)在⊙O内,则⊙O的半径r的取值范围是( )
A. 0<r<4B. 3<r<4C. 4<r<5D. r>5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com