精英家教网 > 初中数学 > 题目详情

【题目】有一直角三角形纸片,C90°,BC6AC8,现将ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为(  )

A. 2 B. C. D. 4

【答案】B

【解析】

已知,∠C=90°BC=6AC=8,由勾股定理求AB,根据翻折不变性,可知DAE≌△DBE,从而得到BD=ADBE=AE,设CE=x,则AE=8-x,在RtCBE中,由勾股定理列方程求解.

∵△CBE≌△DBE

BD=BC=6DE=CE

RTACB中,AC=8BC=6

AB==10

AD=AB-BD=10-6=4

根据翻折不变性得EDA≌△EDB

EA=EB

∴在RtBCE中,设CE=x

BE=AE=8-x

BE2=BC2+CE2

∴(8-x2=62+x2

解得x=

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是( )

A.b2﹣4ac<0
B.abc<0
C.
D.a﹣b+c<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,

下列结论:
①4ac<b2
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强与小刚都住在安康小区,在同一所学校读书.某天早上,小强从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留分钟,校车行驶途中始终保持匀速.当天早上,小刚从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早分钟到学校站点.他们乘坐的车辆从安康小区站出发所行驶路程(千米)与行驶时间(分钟)之间的函数图象如图所示.

(1)求点的纵坐标的值;

(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售每个进价为150元和120元的AB两种型号的足球,如表是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

4

1200

第二周

5

3

1450

进价、售价均保持不变,利润销售收入进货成本

(1)AB两种型号的足球的销售单价;

(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?

(3)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(01)P2(11)P3(10)P4(11)P5(21)P6(20)...,则点P2017的坐标是(  )

A.(6720)B.(6721)C.(6731)D.(6730)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.

查看答案和解析>>

同步练习册答案