【题目】如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1 , 与x轴的另一个交点为A1 . ![]()
(1)当a=﹣1,b=1时,求抛物线n的解析式;
(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.
【答案】
(1)
解:当a=﹣1,b=1时,抛物线m的解析式为:y=﹣x2+1.
令x=0,得:y=1.
∴C(0,1).
令y=0,得:x=±1.
∴A(﹣1,0),B(1,0),
∵C与C1关于点B中心对称,
∴抛物线n的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3
(2)
解:四边形AC1A1C是平行四边形.
理由:连接AC,AC1,A1C1,
![]()
∵C与C1、A与A1都关于点B中心对称,
∴AB=BA1,BC=BC1,
∴四边形AC1A1C是平行四边形
(3)
解:令x=0,得:y=b.
∴C(0,b).
令y=0,得:ax2+b=0,
∴
,
∴
,
∴
.
要使平行四边形AC1A1C是矩形,必须满足AB=BC,
∴
,
∴
,
∴ab=﹣3.
∴a,b应满足关系式ab=﹣3.
【解析】(1)根据a=﹣1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,即可得出答案;(2)利用两组对边分别相等的四边形是平行四边形即可证明;(3)利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】阅读材料:
小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:
.该如何化简呢?思考后,他发现3+2
=1+2
+(
)2=(1+
)2.于是
=
=1+
.善于思考的小明继续深入探索;当a+b
=(m+n
)2时(其中a,b,m,n均为正整数),则a+b
=m2+2
mn+2n2.此时,a=m2+2n2,b=2mn,于是,
=m+n
.请你仿照小明的方法探索并解决下列问题:
(1)设a,b,m,n均为正整数且
=m+n
,用含m,n的式子分别表示a,b时,结果是a= ,b= ;
(2)利用(1)中的结论,选择一组正整数填空:
= +
;
(3)化简:
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为
.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)﹣18×(﹣2)÷3
(2)(﹣
)×(﹣90)÷![]()
(3)﹣2.5÷
×(﹣
);
(4)(﹣10)2﹣[16+(﹣3)2]
(5)(
﹣
+2)÷![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.
(1)求梯子底端B外移距离BD的长度;
(2)猜想CE与BE的大小关系,并证明你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴的交点为A,B(点A在点B的左侧),与y轴的交点为C,连结BC.点M是抛物线上A,C之间的一个动点,过点M作MN∥BC,分别交x轴、抛物线于D,N,过点M作EF⊥x轴,垂足为F,并交直线BC于点E,![]()
(1)求点A,B,C的坐标.
(2)当点M恰好是EF的中点,求BD的长.
(3)连接DE,记△DEM,△BDE的面积分别为S1 , S2 , 当BD=1时,则S2﹣S1= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com