精英家教网 > 初中数学 > 题目详情

【题目】 如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为______cm

【答案】20

【解析】

OOEABE,根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.

解:过OOEABE,∵OA=OB=60cm,∠AOB=120°

∴∠A=B=30°

OE=OA=30cm

∴弧CD的长==20πcm),

设圆锥的底面圆的半径为r,则2πr=20π,解得r=10

∴圆锥的高==20cm).

故答案为:20

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为关注学生出行安全,调查了某班学生出行方式,调查结果分为四类:A﹣骑自行车,B﹣步行,C﹣坐社区巴士,D﹣其它,并将调査结果绘制成以下两幅不完整的统计图.

请你根据统计图,解答下列问题:

1)本次一共调査了多少名学生?

2C类女生有   名,D类男生有   名,并将条形统计图补充完整.

3)若从被调查的A类和D类学生中分别随机选取一位同学进行进一步调查,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.

(1)求甲、乙两种树苗每棵的价格各是多少元?

(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形

1)概念理解

如图1,在四边形ABCD中,添加一个条件使得四边形ABCD等邻边四边形.请写出你添加的一个条件.

2)问题探究

小红猜想:对角线互相平分的等邻边四边形是菱形.她的猜想正确吗?请说明理由.

如图2,小红画了一个Rt△ABC,其中∠ABC=90°AB=2BC=1,并将Rt△ABC沿∠ABC的平分线BB'方向平移得到△ABC',连结AA',BC'.小红要是平移后的四边形ABCA'是等邻边四边形,应平移多少距离(即线段BB'的长)?

3)应用拓展

如图3等邻边四边形”ABCD中,AB=AD∠BAD+∠BCD==90°ACBD为对角线,AC=AB.试探究BCCDBD的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC为对角线,点EF分别在ABAD上,BE=DF,连接EF

1)求证:AC⊥EF

2)延长EFCD的延长线于点G,连接BDAC于点O,若BD=4tanG=,求AO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,圆O是以AB为直径的ABC的外接圆,D是劣弧的中点,连AD并延长与过C点的切线交于点PODBC相交于E

1)求证:OE=AC

2)求证:

3)当AC=6AB=10时,求切线PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,已知ABBC

(1)实践与操作:作ADC的平分线交AB于点E,在DC上截取DF=AD,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)

(2)猜想并证明:猜想四边形AEFD的形状,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,已知△ABCAB=AC,∠BAC=36°,BD是角平分线,求证:点D是线段AC的黄金分割点;

2)如图2,正五边形的边长为2,连结对角线ADBECE,线段AD分别与BECE相交于点MN,求MN的长;

3)设⊙O的半径为r,直接写出它的内接正十边形的长=_________________(用r的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°AB=2D是线段BC上的一个动点,以AD为直径画⊙O分别交ABACEF,连接EF,则线段EF长度的最小值为______

查看答案和解析>>

同步练习册答案