精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM于点D,交BN于点C,
(1)求证:OD∥BE;
(2)如果OD=6cm,OC=8cm,求CD的长.

【答案】
(1)证明:连接OE,

∵AM、DE是⊙O的切线,OA、OE是⊙O的半径,

∴∠ADO=∠EDO,∠DAO=∠DEO=90°

∴∠AOD=∠EOD= ∠AOE,

∵∠ABE= ∠AOE,

∴∠AOD=∠ABE,

∴OD∥BE;


(2)解:由(1)得:∠AOD=∠EOD= ∠AOE,

同理,有:∠BOC=∠EOC= ∠BOE,

∴∠AOD+∠EOD+∠BOC+∠EOC=180°,

∴∠EOD+∠EOC=90°,

∴△DOC是直角三角形,

∴CD= =10(cm).


【解析】(1)首先连接OE,由AM和DE是它的两条切线,易得∠ADO=∠EDO,∠DAO=∠DEO=90°,由切线长定理,可得∠AOD=∠EOD= ∠AOE,∠AOD=∠ABE,根据同位角相等,两直线平行,即可证得OD∥BE;(2)由(1),易证得∠EOD+∠EOC=90°,然后利用勾股定理,即可求得CD的长.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点A(x1 , y1)、B(x2 , y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2 . (用“>”、“<”、“=”填空)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程ax2+bx+30的一个解是x1,则2019ab的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=(m+3x2的图象的开口向下,则m的取值范围是(

A.m0B.m0C.m>﹣3D.m<﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=2(x﹣3)2的顶点在(
A.第一象限
B.第二象限
C.x轴上
D.y轴上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD=60°,则边AB=4,对角线AC长为(
A.4
B.2
C.4
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )
A.y=﹣2(x﹣1)2+6
B.y=﹣2(x﹣1)2﹣6
C.y=﹣2(x+1)2+6
D.y=﹣2(x+1)2﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某鱼池捕鱼8袋,以每袋25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3 2 0.5 1 2 2 2.5.8袋鱼一共多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲同学手中藏有三张分别标有数字、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.

(1)请你用树形图或列表法列出所有可能的结果;

(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.

查看答案和解析>>

同步练习册答案