精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线铀交于两点,与轴交于点,顶点为

1)求抛物线的表达式;

2)若将抛物线沿轴平移后得到抛物线,抛物线经过点且与轴交于点,顶点为.在抛物线上是否存在一点使?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1)抛物线的表达式为;(2)点的坐标为

【解析】

1)直接利用待定系数法即可得;

2)先根据(1)的结论求出点CD的坐标,再根据二次函数的图象平移规律、待定系数法可求出抛物线的表达式,从而可得出点的坐标,然后根据三角形的面积公式建立等式求解即可得.

1)由题意,将点代入

解得

则抛物线的表达式为

2)存在,求解过程如下:

时,,则点C的坐标为

设抛物线的表达式为

∵抛物线经过点

,解得

∴抛物线的表达式为

时,,则点的坐标为

则在中,边上的高为,在中,边上的高为

,即

,即

解得

时,

时,

则点的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系xOy中,点ABC分别为坐标轴上上的三个点,且OA=1OB=3OC=4

1)求经过ABC三点的抛物线的解析式;

2)在平面直角坐标系xOy中是否存在一点P,使得以以点ABCP为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;

3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数的图象经过点与点,抛物线经过原点,顶点是,且与轴交于另一点,则_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点分别在轴的负半轴上,在反比例函数)的图象上,轴交于点,且,若的面积是3,则的值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,点为边的中点,点在对角线上且,则长的最大值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△EBF为等腰直角三角形,点B为直角顶点, 四边形ABCD是正方形.

求证:△ABE≌△CBF

CFAE有什么特殊的位置关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y轴于点A04),交x轴于点B40)、C,点P是抛物线上一动点,过点Px轴的垂线PQ,过点A于点Q,连接APAP不平行x轴).

1)求抛物线的解析式;

2)点P在抛物线上运动,若(点P与点C对应),求点P的坐标;

3)如图2,若点P位于抛物线的对称轴的右侧,将沿AP对折,点Q的对应点为点,当点落在x轴上时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:

金额/

5

10

20

50

100

人数

6

17

14

8

5

则他们捐款金额的众数和中位数分别是( )

A.10010B.1020C.1710D.1720

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB=90°OC=2OBtanABC=2,点B的坐标为(10).抛物线y=x2+bx+c经过AB两点.

1)求抛物线的解析式;

2)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PE最大.

①求点P的坐标和PE的最大值.

②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案