【题目】已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.
(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;
(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;
(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.
【答案】
(1)
解:依题意, ,
解得b=﹣2.
将b=﹣2及点B(3,6)的坐标代入抛物线解析式y=x2+bx+c得6=32﹣2×3+c.
解得 c=3.
所以抛物线的解析式为y=x2﹣2x+3.
(2)
解:∵抛物线y=x2﹣2x+3与y轴交于点A,
∴A(0,3).
∵B(3,6),
可得直线AB的解析式为y=x+3.
设直线AB下方抛物线上的点M坐标为(x,x2﹣2x+3),过M点作y轴的平行线交直线AB于点N,则N(x,x+3).(如图1)
∴ .
∴ .
解得 x1=1,x2=2.
故点M的坐标为(1,2)或 (2,3).
(3)
解:如图2,由 PA=PO,OA=c,可得 .
∵抛物线y=x2+bx+c的顶点坐标为 ,
∴ .
∴b2=2c.
∴抛物线 ,A(0, ),P( , ),D( ,0).
可得直线OP的解析式为 .
∵点B是抛物线 与直线 的图象的交点,
令 .
解得 .
可得点B的坐标为(﹣b, ).
由平移后的抛物线经过点A,可设平移后的抛物线解析式为 .
将点D( ,0)的坐标代入 ,得 .
则平移后的抛物线解析式为 .
令y=0,即 .
解得 .
依题意,点C的坐标为(﹣b,0).
则BC= .
则BC=OA.
又∵BC∥OA,
∴四边形OABC是平行四边形.
∵∠AOC=90°,
∴四边形OABC是矩形.
【解析】(1)首先求出b的值,然后把b=﹣2及点B(3,6)的坐标代入抛物线解析式y=x2+bx+c求出c的值,抛物线的解析式即可求出;(2)首先求出A点的坐标,进而求出直线AB的解析式,设直线AB下方抛物线上的点M坐标为(x,x2﹣2x+3),过M点作y轴的平行线交直线AB于点N,则N(x,x+3),根据三角形面积为3,求出x的值,M点的坐标即可求出;(3)由PA=PO,OA=c,可得 ,又知抛物线y=x2+bx+c的顶点坐标为 ,即可求出b和c的关系,进而得到A(0, ),P( , ),D( ,0),根据B点是直线与抛物线的交点,求出B点的坐标,由平移后的抛物线经过点A,可设平移后的抛物线解析式为 ,再求出b与m之间的关系,再求出C点的坐标,根据两对边平行且相等的四边形是平行四边形,结合∠AOC=90°即可证明四边形OABC是矩形.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,O为BC的中点,AB与⊙O相切于点D.
(1)求证:AC是⊙O的切线;
(2)若∠B=33°,⊙O的半径为1,求BD的长.(结果精确到0.01)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学在教学楼前新建了一座雕塑AB,为了测量雕塑的高度,小明在二楼找到一点C,利用三角尺测得雕塑顶端点A的仰角∠QCA为45°,底部点B的俯角∠QCB为30°,小华在五楼找到一点D,利用三角尺测得点A的俯角∠PDA为60°,若AD为8m,则雕塑AB的高度为多少?(结果精确到0.1m,参考数据: ≈1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,2)、B(﹣5,0)、C(﹣1,0),P(a,b)是△ABC的边AC上一点:
(1)将△ABC绕原点O逆时针旋转90°得到△A1B1C1 , 请在网格中画出△A1B1C1 , 旋转过程中点A所走的路径长为 .
(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2 , 并写出点A2的坐标:A2().
(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意,完成本题解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
;
(4)原不等式组的解集为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=(x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EHEA;
(3)若⊙O的半径为5,sinA=,求BH的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com