精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=(x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.

(1)求点A、B、C的坐标;
(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.

【答案】
(1)

解:令y=0得x1=﹣2,x2=4,

∴点A(﹣2,0)、B(4,0)

令x=0得y=﹣

∴点C(0,﹣


(2)

解:将x=1代入抛物线的解析式得y=﹣

∴点M的坐标为(1,﹣

∴点M关于直线x=﹣2的对称点M′的坐标为(﹣5,

设直线M′B的解析式为y=kx+b

将点M′、B的坐标代入得:

解得:

所以直线M′B的解析式为y=

将x=﹣2代入得:y=﹣

所以n=﹣;


(3)

解:过点D作DE⊥BA,垂足为E.

由勾股定理得:

AD=

BD=

如下图,①当P1AB∽△ADB时,

即:

∴P1B=6

过点P1作P1M1⊥AB,垂足为M1

即:

解得:P1M1=6

即:

解得:BM1=12

∴点P1的坐标为(﹣8,6

∵点P1不在抛物线上,所以此种情况不存在;

②当△P2AB∽△BDA时,即:

∴P2B=6

过点P2作P2M2⊥AB,垂足为M2

,即:

∴P2M2=2

,即:

∴M2B=8

∴点P2的坐标为(﹣4,2

将x=﹣4代入抛物线的解析式得:y=2

∴点P2在抛物线上.

由抛物线的对称性可知:点P2与点P4关于直线x=1对称,

∴P4的坐标为(6,2),

当点P3位于点C处时,两三角形全等,所以点P3的坐标为(0,﹣),

综上所述,点P的坐标为:(﹣4,2)或(6,2)或(0,﹣)时,以P、A、B为顶点的三角形与△ABD相似.


【解析】(1)令y=0可求得点A、点B的横坐标,令x=0可求得点C的纵坐标;
(2)根据两点之间线段最短作M点关于直线x=﹣2的对称点M′,当N(﹣2,N)在直线M′B上时,MN+BN的值最小;
(3)需要分类讨论:△PAB∽△ABD、△PAB∽△ABD,根据相似三角形的性质求得PB的长度,然后可求得点P的坐标.
【考点精析】掌握轴对称-最短路线问题和相似三角形的性质是解答本题的根本,需要知道已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径;对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算与解分式方程.
(1)

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于平面直角坐标系中的任意直线MN及点P,取直线MN上一点Q,线段PQ与直线MN成30°角的长度称为点P到直线MN的30°角的距离,记作d(P→MN).
已知O为坐标原点,A(4,0),B(3,3)是平面直角坐标系中两点.根据上述定义,解答下列问题:

(1)点A到直线OB的30°角的距离d(A→OB)=
(2)已知点G到线段OB的30°角的距离d(G→OB)=2,且点G的横坐标为1,则点G的纵坐标为
(3)若点A到直线l:y=kx+1的30°角的距离d(A→l)=4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.
(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;

(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且SABM=3,求点M的坐标;
(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).

(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是(  )

A.甲的速度随时间的增加而增大
B.乙的平均速度比甲的平均速度大
C.在起跑后第180秒时,两人相遇
D.在起跑后第50秒时,乙在甲的前面

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.

(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于函数y=,下列说法错误的是(  )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小

查看答案和解析>>

同步练习册答案