精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.

(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.

【答案】
(1)

【解答】解:∵△CDQ≌△CPQ,

∴DQ=PQ,PC=DC,

∵AB=DC=5,AD=BC=3,

∴PC=5,

在Rt△PBC中,PB==4,

∴PA=AB﹣PB=5﹣4=1,

设AQ=x,则DQ=PQ=3﹣x,

在Rt△PAQ中,(3﹣x)2=x2+12

解得x=

∴AQ=


(2)

如图2,过M作EF⊥CD于F,则EF⊥AB,

∵MD⊥MP,

∴∠PMD=90°,

∴∠PME+∠DMF=90°,

∵∠FDM+∠DMF=90°,

∴∠MDF=∠PME,

∵M是QC的中点,

根据直角三角形直线的性质求得DM=PM=QC,

在△MDF和△PME中,

∴△MDF≌△PME(AAS),

∴ME=DF,PE=MF,

∵EF⊥CD,AD⊥CD,

∴EF∥AD,

∵QM=MC,

∴DF=CF=DC=

∴ME=

∵ME是梯形ABCQ的中位线,

∴2ME=AQ+BC,即5=AQ+3,

∴AQ=2.


【解析】(1)根据全等三角形的性质求得DQ=PQ,PC=DC=5,然后利用勾股定理即可求得;
(2)过M作EF⊥CD于F,则EF⊥AB,先证得△MDF≌△PME,求得ME=DF=,然后根据梯形的中位线的性质定理即可求得.
【考点精析】通过灵活运用勾股定理的概念和矩形的性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.
(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;

(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且SABM=3,求点M的坐标;
(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.

(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于(  )

A.
B.2
C.1.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为(  )

A.9
B.18
C.36
D.72

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于函数y=,下列说法错误的是(  )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是(
A. π
B. +1
C.π
D.π+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,SBPG=1,则SAEPH=

查看答案和解析>>

同步练习册答案