精英家教网 > 初中数学 > 题目详情
19.已知等腰△OAB和等腰△OCD,OA=OB,OC=OD,∠AOB=∠COD,O,C,B在一条直线上,连AC,过B作BE∥AC交直线OA于点E.
①如图(1),当∠AOB=∠COD=60°时,∠EBD=120°;
②如图(2),当∠AOB=∠COD=90°时,∠EBD=90°.

分析 根据已知条件证得△AOC≌△BOD,由全等三角形的性质得到∠ACO=∠BDO,根据平行线的性质得到∠ACO=∠EBO,等量代换得到∠EBO=∠BDO,于是得到∠EBD=∠OBE+∠OBD=∠ODB+∠OBD=180°-∠DOB,①由∠DOB=60°,即可得到∠EBD=120°,②由∠DOB=90°,即可得到∠EBD=90°.

解答 解:在△AOC与△BOD中,$\left\{\begin{array}{l}{AO=BO}\\{∠AOC=∠BOD}\\{OC=OD}\end{array}\right.$,
∴△AOC≌△BOD,
∴∠ACO=∠BDO,
∵AC∥BE,
∴∠ACO=∠EBO,
∴∠EBO=∠BDO,
∴∠EBD=∠OBE+∠OBD=∠ODB+∠OBD=180°-∠DOB,
①∵∠DOB=60°,
∴∠EBD=120°,
②∵∠DOB=90°,
∴∠EBD=90°.
故答案为:120°,90°.

点评 本题考查了全等三角形的判定和性质,三角形的内角和,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.若等腰直角三角形的外接圆半径的长为$\sqrt{2}$,则其内切圆半径的长为(  )
A.$2\sqrt{2}-1$B.$2\sqrt{2}-2$C.$2-\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、
OD,AB的中点.下列结论:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;
④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是(  )
A.①②④B.①③⑤C.③④⑤D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,已知菱形ABCD的边长为2,∠A=30°,点P与点Q同时从点A出发,点P沿AB运动到点B停止,点Q沿AD→DC→CB运动到点B停止,若它们运动的速度都是每秒1个单位,当点P、Q出发t秒后,△APQ的面积为S(平方单位),则S关于t的函数图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABC中,∠BAC=90°,取BF=AB,作DF⊥BC交AC于D,作AE⊥BC于E.
(1)求证:AG=GF.
(2)求证:GF∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,抛物线y=mx2-11mx+24m(m<0)与x轴交于B,C两点(点B在点C的左侧).
(1)若点A在抛物线上,且OA=AC,∠BAC=90°,求此时抛物线的解析式;
(2)如图2,在(1)的条件下,点M始终位于抛物线上A,C两点之间,过点M作直线l:x=n,交直线AC于点N,连接AM,MC,试探究当n为何值时,△AMC的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图,在四边形ABCD中,∠A=∠B=90°,AB=AD=18,∠CDE=45°,CE=15,求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:
(1)当t为何值时,PQ∥AC?
(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:
(1)$\sqrt{18}$-4$\sqrt{\frac{1}{2}}$+$\sqrt{24}$$÷\sqrt{3}$
(2)已知a=$\sqrt{3}$-2,b=$\sqrt{3}$+2,求代数式a2+ab+b2的值.

查看答案和解析>>

同步练习册答案