精英家教网 > 初中数学 > 题目详情
4.如图,点P将线段AB分割成两条线段AP、PB,且AP:AB=PB:AP,那么点P就叫做线段AB的黄金分割点;若AB=3,那么AP的长为$\frac{-3+3\sqrt{3}}{2}$.

分析 设AP=x,则PB=3-x,根据AP:AB=PB:AP,列方程解答.

解答 解:设AP=x,则PB=3-x,
列方程,得$\frac{x}{3}$=$\frac{3-x}{x}$,
解得x1=$\frac{-3+3\sqrt{3}}{2}$,
x2=$\frac{-3-3\sqrt{3}}{2}$(舍去);
故答案为$\frac{-3+3\sqrt{3}}{2}$.

点评 本题考查了黄金分割,根据题目给出的条件列方程是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,在同一坐标下,一次函数y=ax-b与二次函数y=ax2+bx+2的图象大致可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若四边形EFGH为矩形,则四边形ABCD的对角线AC与BD须满足的关系为AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.把命题“全等三角形对应边的高相等”改写成“如果…那么…”的形式是如果两个三角形全等,那么它们对应边的高相等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,若BC∥DE∥AF 则下列结论中:
①?△ADE∽△ABC 
②$\frac{FC}{FE}$=$\frac{AB}{AE}$;
③若AD=4,AC=5,则AF:DE=4:5;
④$\frac{AF}{DE}$=$\frac{AB}{BE}$;
正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知关于x的一元二次方程x2-2kx-2+2k=0
求证:不论k为任何实数,方程总有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某地电话上网有A B两种收费方式,用户可以任选其一,收费方式A(计时制):0.05元/分;收费方式B(包月制)50元/月(限一部个人住宅电话上网);每种收费方式对上网时间都得加收通信费0.02元/分.某一用户一周内上网时间记录如下:周一 32分 周二 40分 周三 36分 周四 42分 周五 35分 周六 47分 周日 48分
(1)计算该用户一周内平均每天上网的时间;
(2)设改用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户支付的费用;
(3)如果该用户在一个月内(30天),按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.“石油之光”是大庆市市标,如图,某兴趣小组利用课余时间研究市标的高度,在市标底部点A处沿着AC方向走到点B处,在点B处观察市标顶部,测得仰角为60°,继续沿AC方向走13米到点C处,在点C处测得仰角为45°,则市标AD的高度为30.7米(图中AD⊥AC,$\sqrt{2}≈1.41$,$\sqrt{3}≈1.73$,$\sqrt{5}≈2.24$,结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在?ABCD中,点E、F分别在边AB、CD 上,连接DE、BF,∠EDC=∠FBA.求证:四边形DEBF是平行四边形.

查看答案和解析>>

同步练习册答案