精英家教网 > 初中数学 > 题目详情
有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不算重来.
(1)这个游戏是否公平?请说明理由;
(2)如果你认为这个游戏不公平,那么请你修改游戏规则,使游戏公平.
考点:游戏公平性
专题:
分析:(1)游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等即可;
(2)因为概率大的获胜的可能性大,由(1)可知乙获胜的可能性大.新的游戏规则只要满足其概率相等即可.
解答:解:(1)不公平.理由如下:
所有可能出现的结果如下表所示:
第二枚
第一枚 
正 反 
 正 (正、正) (正、反)
 反 (反、正) (反、反)
因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反.
所以出现两个正面的概率为
1
4

出现一正一反的概率为
1
2

因为二者概率不等,所以游戏不公平.

(2)游戏规则一:若出现两个相同面,则甲赢;若出现一正一反(一反一正),则乙赢.
游戏规则二:若出现两个正面,则甲赢;若出现两个反面,则乙赢;若出现一正一反,则甲、乙都不赢.
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,圆O的半径为r.
(1)在图①中,画出圆O的内接正△ABC,简要写出画法;求出这个正三角形的周长.
(2)在图②中,画出圆O的内接矩形ABCD,简要写出画法;若设AB=x,则矩形的周长为
 

(3)如图③,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并探究L是否有最大值,若有,请指出x为何值时,L取得最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC至E,使CE=AD.
(1)请说明线段BD与DE的数量关系,并予以证明;
(2)若将“D是AC的中点”改为“D是AC上任意一点”,其他条件不变,BD与DE的数量关系如何?请画图证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=2x的图象为l1,函数y=2x-2的图象为l2
(1)在给定的直角坐标系中分别作出l1和l2
(2)l2与x轴的交点坐标为
 
,l2与y轴的交点坐标为
 

(3)l1和l2的位置关系为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为⊙O的直径MN上一点,过P作弦AC、BD使∠APM=∠BPM,求证:PA=PB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若?ABCD的对角线交于O,△OBC周长为59,BD为38,AC为24,△OBC比△OAB的周长多15,你能求出AD、AB的长是多少吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

一个水利勘察队沿河向上游走了5
1
2
千米,又继续向上游走了5
1
3
千米,然后向下游走了4
2
3
千米,接着又向下游走了5
1
2
千米,这时勘察队在出发点的(  )
A、上游1
1
3
千米处
B、下游1千米处
C、上游
2
3
千米处
D、下游
2
3
千米处

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:△ABC中,点O是AC边上一动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O运动到AC中点时,四边形AECF为怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

现将一个长为4厘米,宽为3厘米的长方形,分别绕它的相邻两边所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?通过计算你发现了什么?(π取3.14)

查看答案和解析>>

同步练习册答案