分析 (1)根据圆周角定理得出∠ACB=90°,再由锐角三角函数的定义求出BC的长,连接OC,过点C作CE⊥x轴于点E,则可得出CE的长,由阴影部分的面积=S扇形OBC-S△OBC即可得出结论;
(2)连接AD,由角平分线的定义求出∠ACD的度数,过点A作AF⊥CD于点F,由锐角三角函数的定义求出AF,CF及DF的长,根据CD=CF+FD即可得出结论.
解答 解:
(1)∵AB是⊙O的直径,
∴∠ACB=90°.
在Rt△ACB中,
∵∠CAB=60°,AB=6,
∴BC=AB•sin∠CAB=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,∠CBA=30°,
如图1,连接OC,过点C作CE⊥x轴于点E,
在Rt△BCE中,CE=BCsin∠CBA=3$\sqrt{3}$×$\frac{1}{2}$=$\frac{3\sqrt{3}}{2}$,
阴影部分的面积=S扇形OBC-S△OBC=$\frac{120}{360}$×π×9-$\frac{1}{2}$×$\frac{3\sqrt{3}}{2}$×3=3π-$\frac{9\sqrt{3}}{4}$;
(2)连接AD,
∵∠ABC=30°,
∴∠ADC=∠ABC=30°,![]()
在△CAD中,AC=3,∠ACD=45°,
过点A作AF⊥CD于点F,在Rt△AFC中,AF=CF=$\frac{3\sqrt{2}}{2}$,
在Rt△AFD中,
∵DF=$\sqrt{3}$AF=$\frac{3\sqrt{6}}{2}$,
∴CD=CF+FD=$\frac{3\sqrt{6}}{2}$+$\frac{3\sqrt{2}}{2}$.
点评 本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 2、3、4 | B. | 5、5、6 | C. | 2、$\sqrt{3}$、$\sqrt{5}$ | D. | $\sqrt{2}$、$\sqrt{3}$、$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{20}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com