精英家教网 > 初中数学 > 题目详情

【题目】(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AEBC,垂足为E,沿AE剪下ABE,将它平移至DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为   

A.平行四边形

B.菱形

C.矩形

D.正方形

(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下AEF,剪下AEF,将它平移至DE′F′的位置,拼成四边形AFF′D.

求证:四边形AFF′D是菱形.

【答案】(1)C;(2)详见解析.

【解析】

(1)根据矩形的判定可得答案;

(2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D四边都相等,即可得证

解:(1)由题意可知ADEE′平行且相等,

AEBC

四边形AEE′D为矩形

故选C

(2) ∵AD=5,S□ABCD=15,∴AE=3,

在图2中,EF=4,

Rt△AEF中,AF=

AFAD=5,

AFDF′AFDF′

四边形AFF′D是平行四边形

AFAD

四边形AFF′D是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD___∠ACE(填“>”“<”或“=”),∠A+∠DOE=___度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】提出问题:
(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;

(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;

(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.

(1)求A、B两点的坐标;

(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:

①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;

②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y= x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为(),BK的长是 , CK的长是
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2 , 在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为( ,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.

(1)如果参观的学生人数36人,至少应付多少元?

(2)如果参观的学生人数为48人,至少应付多少元?

(3)如果参观的学生人数为一个两位数(a表示十位上的数字,b表示个位上的数字),用含a、b的代数式表示至少应付给科技馆的总金额.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列说法错误的是( ).

①∠1∠3是同位角;②∠1∠5是同位角;③∠1∠2是同旁内角;④∠1∠4是内错角.

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

同步练习册答案