精英家教网 > 初中数学 > 题目详情

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

【答案】A
【解析】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,

由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,

∵AD∥x轴,

∴∠DAO+∠AOD=180°,

∴∠DAO=90°,

∴∠OAB+∠BAD=∠BAD+∠DAC=90°,

∴∠OAB=∠DAC,

在△OAB和△DAC中,

∴△OAB≌△DAC(AAS),

∴OB=CD,

∴CD=x,

∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,

∴y=x+1(x>0).

故答案为:A.

过点C作y轴垂线,构造出全等三角形,尤其性质对应边转化为坐标求出y、x的函数关系是y=x+1(x>0),图像是一条射线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(2,2)、B(4,0)、C(4,﹣4).
①请画出△ABC向左平移6个单位长度后得到的△A1B1C1
②以点O为位似中心,将△ABC缩小为原来的 ,得到△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,平分,∠B=450,∠C=730

(1) 求的度数;

(2) 如图②,若把“”变成“点FDA的延长线上,”,其它条件不变,求 的度数;

(3) 如图③,若把“”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A23),点B﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知点A(6,0),又点B(xy)在第一象限内,且xy=8,设△AOB的面积是S.

(1)写出Sx之间的函数解析式,并求出x的取值范围;

(2)画出(1)中所求函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、Cn在直线y=﹣ x+ 上,顶点D1、D2、D3、…、Dn在x轴上,则第n个阴影小正方形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,∠221,点Cx轴正半轴上的一动点.

1)求∠1的度数;

2)若OFACOEAB,求证:∠EOF=∠EAF

3)点C在运动中,若∠1=∠ACO,试判断ABAC有怎样的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:

(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

同步练习册答案