精英家教网 > 初中数学 > 题目详情
4.在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.
(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是AG=EG,位置关系是AG⊥EG;
(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;
(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.

分析 (1)由平移得到EF=AD,再由正方形的性质得出∠ADG=∠CDB,DG=FG,从而证明△AGD≌△EGF即可;
(2)由平移得到EF=AD,再由正方形的性质得出∠ADG=∠CDB,DG=FG,从而证明△AGD≌△EGF即可;
(3)由(1)的结论AG=EG,AG⊥EG,得出∠GEA=45°,推导出∠AED=30°,再由三角函数即可求解.

解答 解:(1)如图1,

由平移得,EF=AD,
∵BD是正方形的对角线,
∴∠ADB=∠CDB=45°,
∵GF⊥BD,
∴∠DGF=90°,
∴∠GFD+∠CBD=90°,
∴∠DFG=45°,
∴GD=GF,
在△AGD和△EGF中,
$\left\{\begin{array}{l}{AD=EF}\\{∠ADG=∠EFG}\\{DG=FG}\end{array}\right.$,
∴△AGD≌△EGF
∴AG=EG,∠AGD=∠EGF,
∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,
∴AG⊥EG.
故答案为AG=EG,AG⊥EG.

(2)(1)中的结论仍然成立,
证明:如图2

由平移得,EF=AD,
∵BD是正方形的对角线,
∴∠ADB=∠CDB=45°,
∵GF⊥BD,
∴∠DGF=90°,
∴∠GFD+∠CBD=90°,
∴∠DFG=45°,
∴GD=GF,
在△AGD和△EGF中,
$\left\{\begin{array}{l}{AD=EF}\\{∠ADG=∠EFG}\\{DG=FG}\end{array}\right.$,
∴△AGD≌△EGF
∴AG=EG,∠AGD=∠EGF,
∴∠AGE=∠AGD-∠DGE=∠EGF-∠DGE=90°,
∴AG⊥EG.

(3)如图3,连接EG,
由(1)有,AG=EG,AG⊥EG,
∴∠GEA=45°,
∵∠AGF=120°,∠DGF=90°,
∴∠AGB=∠FGE=30°,∠DGE=60°,
∴∠DEG=75°,
∵GD=GF,
∴∠GDF=∠GFD=45°,
∴∠AED=30°,
在Rt△ADE中,AD=2,
∴DE=2$\sqrt{3}$.

点评 此题是四边形综合题,主要考查了全等三角形的判定和性质,平移的性质,找出△AGD≌△EGF的条件是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.问题提出
学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
初步思考
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可以分为“∠B是直角、钝角、锐角”三种情况进行探究.
深入探究
第一种情况:当∠B为直角时,△ABC≌△DEF
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B为钝角时,△ABC≌△DEF
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B为锐角时,△ABC和△DEF不一定全等
(3)如图,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中再作出△DEF,△DEF和△ABC不全等.(不写作法,保留作图痕迹).
(4)∠B还要满足什么条件,就可以使得△ABC≌△DEF,请直接填写结论:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知∠1=∠2,BD平分∠ABC,可得到那两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一做如何改变?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.(x32n=x6n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.现有三个正整数,其中每一个都小于2000,而其中每两个数的最小公倍数都大于2000.证明:这些数的倒数之和小于2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在⊙0中,弦AB与弦CD交于点G,OA⊥CD于E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙0的切线;
(2)若DG=2,DF=3,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:(x-y)2(x-y)(y-x)3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明用下面的方法求出方程2$\sqrt{x}$-3=0的解,请你仿照他的方法求出下面两外两个方程的解,并把你的解答过程填写在下面的表格中.
 方程 换元法得新方程 解新方程检验  求原方程的解
 2$\sqrt{x}$-3=0 令$\sqrt{x}$=t,则2t-3=0t=$\frac{3}{2}$ t=$\frac{3}{2}>0$ $\sqrt{x}$=$\frac{3}{2}$,所以x=$\frac{9}{4}$
 x+2$\sqrt{x}$-3=0令$\sqrt{x}$=t,则t2+2t-3=0 t=-3或t=1t=-3<0,t=1>0$\sqrt{x}$=1,所以x=1 
 x+$\sqrt{x-2}-4=0$令$\sqrt{x-2}$=t,则t2+t-2=0 t=-2或t=1t=-2<0,t=1>0 $\sqrt{x-2}$=1,所以x=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算
(1)($\sqrt{3}$+2)2+($\sqrt{5}$+$\sqrt{3}$)($\sqrt{5}$-$\sqrt{3}$)
(2)$\sqrt{18}$$÷\sqrt{3}$+$\sqrt{24}$-$\sqrt{\frac{1}{2}}$×$\sqrt{12}$.

查看答案和解析>>

同步练习册答案