【题目】长方形的长为a厘米,宽为b厘米,其中a>b,如果将原长方形的长和宽各增加3厘米,得到的新长方形面积记为S1,如果将原长方形的长和宽分别减少2厘米,得到的新长方形面积记为S2.
(1)若a、b为正整数,请说明:S1与S2的差一定是5的倍数;
(2)如果S1=2S2,求将原长方形的长和宽分别减少7厘米后得到的新长方形面积;
(3)如果用一个面积为S1的长方形和两个面积为S2的长方形恰好能没有缝隙没有重叠地拼成一个正方形,求a,b的值.
【答案】(1)见解析;(2)将原长方形的长和宽分别减少7厘米后得到的新长方形面积为50平方厘米;(3)a,b的值分别为7和4.5
【解析】
(1)分别求出S1,S2,S1﹣S2的值,从而求解;(2)由S1=2S2,求得ab﹣7a﹣7b=1,然后求出将原长方形的长和宽分别减少7厘米后得到的新长方形面积,最后整体代入求值即可;(3)由题意,根据拼接图形的边长之间的等量关系,列方程组求解,根据问题的实际意义作出取舍即可.
解:(1)证明:由题意得:
S1=(a+3)(b+3)=ab+3(a+b)+9
S2=(a﹣2)(b﹣2)=ab﹣2(a+b)+4
∴S1﹣S2=ab+3(a+b)+9﹣ab+2(a+b)﹣4
=5(a+b)+5=5(a+b+1) ∴S1与S2的差一定是5的倍数.
(2)∵S1=2S2,
∴ab+3a+3b+9=2(ab﹣2a﹣2b+4)
∴ab﹣7a﹣7b-1=0
∴ab﹣7a﹣7b=1
∵将原长方形的长和宽分别减少7厘米后得到的新长方形面积为:
(a﹣7)(b﹣7)=ab﹣7a﹣7b+49=1+49=50
∴将原长方形的长和宽分别减少7厘米后得到的新长方形面积为50平方厘米.
(3)由题意可得方程组:
①
解得
②
解得:故该组方程组的解不符合题意
∴a,b的值分别为7和4.5
科目:初中数学 来源: 题型:
【题目】已知关于x的代数式x2+bx+c,设代数式的值为y.下表中列出了当x分别取﹣1,0,1,2,3,4,5,…m,m+1…时对应的y值.
x | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | m | m+1 | |||
y | 10 | 5 | 2 | 1 | 2 | 5 | n | p | q |
(1)表中n的值为 ;
(2)当x= 时,y有最小值,最小值是 ;
(3)比较p与q的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?
(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?
(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx(a≠0)中自变量x和函数值y的部分对应值如下表:
x | … | ﹣2.5 | ﹣2 | ﹣1 | 0 | 0.5 | … |
y | … | ﹣5 | 0 | 4 | 0 | ﹣5 | … |
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象;
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<﹣1,试比较y1与y2的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,.
(1)尺规作图(保留作图痕迹,不写作法与证明):
①作的平分线交边于点;
②过点作于点;
(2)在(1)所画图中,若,,则长为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表。
组别 | 分数段 | 频次 | 频率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
请根据所给信息,解答以下问题:
(1)表中a=___,b=___;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com