【题目】圆形钟面上从2点整到4点整,时针和分针成60度角时的时间是__________.
【答案】2点整或2点分或3点分或3点分
【解析】
根据2点整的时刻,时针与分针正好成60度角;设2点x分的时刻,时针与分针成60度角;设3点x分的时刻,时针与分针成60度角;设3点x分的时刻,时针与分针成60度角列方程即可得到结论.
∵分针走一圈(360度)要1小时,即速度为360度/1小时=360度/60分钟=6度/分钟,
钟面(360度)被平均分成了12等份,
∴每份(相邻两个数字之间)是30度,
∴设x分钟后,时针走过的角度为0.5x度,分针走过的角度为6x度,
(1)显然2点整的时刻,时针与分针正好成60度角;
(2)设2点x分的时刻,时针与分针成60度角,则应该是分针在前,有
6x(2×30+0.5x)=60,
∴5.5x=120,
∴x=,
∴2点的时刻,时针与分针成60度角;
(3)设3点x分的时刻,时针与分针成60度角(时针可以在前),有
3×0+0.5x6x=60,
∴5.5x=30,
∴x=,
∴3点分的时刻,时针与分针成60度角;
(4)设3点x分的时刻,时针与分针成60度角(分针可以在前),有
6x(3×30+0.5x)=60,
∴5.5x=150,
∴x=,
∴3点分的时刻,时针与分针成60度角.
综上所述,时针和分针成60度角时的时间是2点整或2点分或3点分或3点分,
故答案为:2点整或2点分或3点分或3点分.
科目:初中数学 来源: 题型:
【题目】如图,已知,、的交点为,现作如下操作:
第一次操作,分别作和的平分线,交点为,
第二次操作,分别作和的平分线,交点为,
第三次操作,分别作和的平分线,交点为,
…
第次操作,分别作和的平分线,交点为.
若度,那等于__________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为 ”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为 ”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在 附近
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).
(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为;
(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与y轴交于点,与x轴交于点B,,直线CD与y轴交于点D,与x轴交于点,,直线AB与直线CD交于点Q,E为直线CD上一动点,过点E作x轴的垂线,交直线AB于点M,交x轴于点N,连接AE、BE.
求直线AB、CD的解析式及点Q的坐标;
当E点运动到Q点的右侧,且的面积为时,在y轴上有一动点P,直线AB上有一动点R,当的周长最小时,求点P的坐标及周长的最小值.
在问的条件下,如图2将绕着点B逆时针旋转得到,使点M与点G重合,点N与点H重合,再将沿着直线AB平移,记平移中的为,在平移过程中,设直线与x轴交于点F,是否存在这样的点F,使得为等腰三角形?若存在,求出此时点F的坐标;若不存在,说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com