精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).

【答案】
(1)

证明:连接OE,

∵在△ABC中,∠C=90°,FG⊥BC,

∴∠BGF=∠C=90°,

∴FG∥AC,

∴∠OFG=∠A,

∴∠OFE= ∠OFG,

∴∠OFE=∠EFG,

∵OE=OF,

∴∠OFE=∠OEF,

∴∠OEF=∠EFG,

∴OE∥FG,

∴OE⊥BC,

∴BC是⊙O的切线


(2)

解:∵在Rt△OBE中,sinB= ,⊙O的半径为r,

∴OB= r,BE= r,

∴BF=OB+OF= r,

∴FG=BFsinB= r,

∴BG= = r,

∴EG=BG﹣BE= r,

∴SFGE= EGFG= r2,EG:FG=1:2,

∵BC是切线,

∴∠GEH=∠EFG,

∵∠EGH=∠FGE,

∴△EGH∽△FGE,

=( )=

∴SEHG= SFGE= r2


【解析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE= ∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;
    (2)由在△OBE中,sinB= ,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.

(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;

(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集在数轴上表示为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+b的图象与反比例函数y= (k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).
(1)求反比例函数的表达式和a、b的值;
(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD△ABC的中线,BE△ABD的中线.

(1)在△BED中作BD边上的高,垂足为F;

(2)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(  )

A.πcm
B.2πcm
C.3πcm
D.5πcm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,点OAC边上一个动点,过点O作直线MNBC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F

(1)求证:EOFO

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;
(2)在x轴的负半轴上存在一点P,使得SAOP= SAOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AECD于点F,连接DE.

(1)求证:△DEC≌△EDA;

(2)求DF的值;

(3)在线段AB上找一点P,连结FP使FPAC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.

查看答案和解析>>

同步练习册答案