分析 (1)利用SAS即可证得两个三角形全等;
(2)根据∠ABC=90°,即∠CBP+∠ABP=90°,利用等量代换即可证得∠PBE=90°,即可证得;
(3)根据旋转的定义即可解答.
解答 (1)证明:∵正方形ABCD中,AB=BC,
在△CPB和△AEB中,
$\left\{\begin{array}{l}{AB=CB}\\{∠ABE=∠CBP}\\{BE=BP}\end{array}\right.$,
∴△CPB≌△AEB;
(2)证明:∵正方形ABCD中,∠ABC=90°,即∠CBP+∠ABP=90°,
又∵∠CBP=∠ABE,
∴∠ABP+∠ABE=90°,即∠PBE=90°,
∴PB⊥BE;
(3)△AEB绕点B逆时针旋转90°,即可得到△CPB.
点评 本题考查了正方形的性质以及旋转的定义,正确证明△CPB≌△AEB是关键.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 32 | B. | 64 | C. | 128 | D. | 256 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 30° | B. | 40° | C. | 50° | D. | 70° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com