【题目】如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,若AD的长为2x+3,BE的长为x+1,ED=5,则x的值为_____.
【答案】3
【解析】解:∵BE⊥CE,AD⊥CE,
∴∠BCE+∠ACD=90°,∠CAD+∠ACD=90°,
∴∠BCE=∠CAD,
在△BCE与△CAD中
∵AC=BC,
∠BEC=∠CDA,
∠BCE=∠ACD,,
∴△BCE≌△CAD,
∴BE=CD,AD=CE,
又∵AD的长为2x+3,BE的长为x+1,ED=5,
∴CD+DE=CE=AD,即可得出方程x+1+5=2x+3,
解得:x=3.
点睛:首先判断出∠BCE=∠ACD,再结合AC=BC,∠BEC=∠CDA=90°,可判断△BCE≌△CAD,得出BE=CD,AD=CE,从而根据CD+DE=CE=AD,得出方程x+1+5=2x+3,解出即可得出x的值.
科目:初中数学 来源: 题型:
【题目】(1)已知图1将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;
(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;
(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点O,点F是线段AO上的点(与A,O不重合),∠EAF=90°,AE=AF,连接FE,FC,BE,BF.
(1)求证:BE=BF;
(2)如图②,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF交AB于点G,交BE于点K.求证:△AGC∽△KGB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度数;
(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究应用:用“∪”、“∩”定义两种新运算:对于两数a、b,规定a∪b=10a×10b,a∩b=10a÷10b,例如:3∪2=103×102=105,3∩2=103÷102=10.
(1) 求: (2017∪983) 的值
(2) 求: (2018∩2016) 的值;
(3) 当x为何值时, (x∪5)的值与 (23∩17)的值相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.
(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;
(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD和四边形位似,位似比
=2,四边形A′B′C′D′和四边形
位似,位似比
=1.四边形
和四边形ABCD是位似图形吗?位似比是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com