精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+cx轴于A、B两点(AB的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

【答案】(1)A点坐标(﹣3,0),B点坐标(1,0);(2)抛物线的解析式为y=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由见解析.

【解析】1)根据OA,OB的长,可得答案;

(2)根据待定系数法,可得函数解析式;

(3)根据相似三角形的判定与性质,可得EG,EF的长,根据整式的加减,可得答案.

1)由抛物线y=ax2+bx+cx轴于A、B两点(AB的左侧),且OA=3,OB=1,得

A点坐标(﹣3,0),B点坐标(1,0);

(2)设抛物线的解析式为y=a(x+3)(x﹣1),

C点坐标代入函数解析式,得

a(0+3)(0﹣1)=3,

解得a=﹣1,

抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;

(3)EF+EG=8(或EF+EG是定值),理由如下:

过点PPQy轴交x轴于Q,如图

P(t,﹣t2﹣2t+3),

PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,

PQEF,

∴△AEF∽△AQP,

EF==

又∵PQEG,

∴△BEG∽△BQP,

EG===2(t+3),

EF+EG=2(1﹣t)+2(t+3)=8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为  ,线段AD、BE之间的关系  

(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCEDE边上的高,连接BE.①请判断∠AEB的度数,并说明理由;②当CM=5时,ACBE的长度多6时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AB=AC,ADBC于点D.

(1)如图1,点E,FAB,AC上,且∠EDF=90°.求证:BE=AF;

(2)M,N分别在直线AD,AC上,且∠BMN=90°.

①如图2,当点MAD的延长线上时,求证:AB+AN=AM;

②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车经销商计划投入7.1万元购进100A型和30B型自行车,其中B型车单价是A型车单价的6倍少60元.

(1)求A、B两种型号的自行车单价分别是多少元?

(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点CCEABDO的延长线于点E,连接AE.

(1)求证:四边形AECD是菱形;

(2)若四边形AECD的面积为24,tanBAC=,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC为数轴上的三点,动点AB同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8

1)若2秒后,ab满足|a+8|+|b2|0,则x   y   .并请在数轴上标出AB两点的位置.

2)若动点AB在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a||b|,使得z   

3)若动点AB在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC1.5AB,则t   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图点 P 是等边ABC 内一点,APC 绕点 C 顺时针旋转 60°得到BDC,连接 PD.

(1)求证:DPC 是等边三角形;

(2)当∠APC=150°时,试判断DPB 的形状,并说明理由;

(3)当∠APB=100°DPB 是等腰三角形,求∠APC 的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别交于C、D两点,与双曲线在第一象限内交于点P,过点PPA⊥x轴于点A,PB⊥y轴于点B,已知B(0,4)且SDBP=27.

(1)直接写出直线的解析式_____________,双曲线的解析式____________

(2)设点Q是直线上的一点,且满足△DOQ的面积是△COD面积的2倍,请求出点Q的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了参加荆州市中小学生首届诗词大会,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:

班级

平均分

中位数

众数

方差

八(1)

85

b

c

22.8

八(2)

a

85

85

19.2

(1)直接写出表中a,b,c的值;

(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.

查看答案和解析>>

同步练习册答案