精英家教网 > 初中数学 > 题目详情

【题目】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为  ,线段AD、BE之间的关系  

(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCEDE边上的高,连接BE.①请判断∠AEB的度数,并说明理由;②当CM=5时,ACBE的长度多6时,求AE的长.

【答案】(1)60°;相等;(2)①∠AEB=90°;②AE= 17.

【解析】

(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;

(2)易证△ACD≌△BCE,利用勾股定理进行解答即可.

解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,

∴∠ACD=∠BCE,

△ACD△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,

∴∠AEB=∠CEB﹣∠CED=60°,

故答案为:60°;相等;

(2)①∠AEB=90°,

∵△ACB△DCE均为等腰直角三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°,

∴∠ACD=∠BCE.

△ACD△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE,∠ADC=∠BEC.

∵△DCE为等腰直角三角形,

∴∠CDE=∠CED=45°,

A、D、E在同一直线上,

∴∠ADC=135°.

∴∠BEC=135°,

∴∠AEB=∠BEC﹣∠CED=90°.

②∵CD=CE,CM⊥DE,

∴DM=ME=5.

Rt△ACM中,AM2+CM2=AC2

设:BE=AD=x,则AC=(6+x),

(x+5)2+52=(x+6)2

解得:x=7.

所以可得:AE=AD+DM+ME=17.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.

(1)求证:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:|﹣ |﹣2cos45°﹣( 1+(tan80°﹣ 0+
(2)化简:( ﹣2)÷ ﹣2x,再代入一个合适的x求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点OEF∥ABBCF,交ACE,过点OOD⊥BCD,下列四个结论:

①∠AOB=90°+CAE+BF=EF③当∠C=90°时,EF分别是ACBC的中点;④若OD=aCE+CF=2b,则SCEF=ab其中正确的是(  )

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.

(1)问:年降水量为多少万m3?每人年平均用水量多少m3

(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?

(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AD=AE,B=C,BAE=CAD,BDCE相于点F.

求证:(1)AB=AC;(2)FB=FC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +|1﹣ |﹣2sin60°+(π﹣2016)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:(

查看答案和解析>>

同步练习册答案